Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
THN
Xem chi tiết
Doanh Phung
Xem chi tiết
Lê Trung Hiếu
24 tháng 7 2019 lúc 17:41

a) \(A=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{6}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(A=\frac{\left(-\sqrt{a}+1\right)^2}{\left(-a+1\right)^2}.\left(\sqrt{a}+\frac{-a\sqrt{a}+1}{-\sqrt{a}+1}\right)\)

\(A=\frac{\left(1-\sqrt{a}\right)^2\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)}{\left(1-a\right)^2}\)

\(A=\frac{\frac{-a\sqrt{a}+\sqrt{a}.\left(-\sqrt{a}+1\right)+1}{-\sqrt{a}+1}.\left(-\sqrt{a}+1\right)^2}{\left(1-a\right)^2}\)

\(A=\frac{a^2-2a+1}{\left(1-a\right)^2}\)

\(A=\frac{\left(a-1\right)^2}{\left(1-a\right)^2}\)

\(A=1\)

Hà Thị Phương Anh
Xem chi tiết
Nguyễn Thị BÍch Hậu
4 tháng 7 2015 lúc 20:51

đk: x>=0; x khác 3

a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)

b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)

ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)

Xem chi tiết
Nguyễn Dương Tùng Duy
2 tháng 10 2019 lúc 20:50

IQ vô cực thì tự làm đi

thay tên rồi chỉ

Ayawasa Misaki
2 tháng 10 2019 lúc 20:53

IQ vô cực mà , bn tự làm đc cái biểu thức dễ ợt này mà

Phuong ratngu
Xem chi tiết
Darlingg🥝
30 tháng 12 2019 lúc 13:17

\(\frac{a-b}{\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a}^3+\sqrt{b}^3}{a-b}\)

\(=\sqrt{a}+\sqrt{b}+\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\sqrt{a}+\sqrt{b}+\frac{a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}+\frac{a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{a-b+a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{2a-\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)

Khách vãng lai đã xóa
Trần Huỳnh Như
Xem chi tiết
Huỳnh Thoại
25 tháng 8 2016 lúc 19:03

a) ĐKXĐ: \(x\ge0;x\ne1\)

P=\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2.\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

 =\(\left(\frac{a-1}{2\sqrt{a}}\right)^2.\left(\frac{-1-3\sqrt{a}}{a-1}\right)\)

 =\(\frac{\left(a-1\right)^2}{4a}.\frac{-1-3\sqrt{a}}{a-1}\)

 =\(\frac{\left(a-1\right)\left(-1-3\sqrt{a}\right)}{4a}\)

 

 

KHANH QUYNH MAI PHAM
Xem chi tiết
Phạm Thị Thùy Linh
31 tháng 7 2019 lúc 22:11

\(a.A=\frac{5\sqrt{x}+4}{x+\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}.\)

\(=\frac{5\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)\(+\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)\(-\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{5\sqrt{x}+4+x-2\sqrt{x}+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{-\sqrt{x}+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=-\frac{1}{\sqrt{x}+2}\)

\(b,4A_{min}\Leftrightarrow A_{min}\Rightarrow\frac{-1}{\sqrt{x}+2}\)nhỏ nhất

\(\frac{\Rightarrow1}{\sqrt{x}+2}\)lớn nhất \(\Leftrightarrow\sqrt{x}+2\)nhỏ nhất

\(\sqrt{x}+2\ge2\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)

\(\Rightarrow A_{min}=\frac{-1}{0+2}=-\frac{1}{2}\Rightarrow4A_{min}=-1\Leftrightarrow x=0\)

nguyen hieu
Xem chi tiết
Đinh quang hiệp
14 tháng 6 2018 lúc 20:19

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)

THN
Xem chi tiết