Cho tứ giác ABCD có M,N là trung điểm của AD và BC.cm \(MN\le\frac{AB+CD}{2}\)
Cho tứ giác lồi ABCD có M,N là trung điểm của AB và CD. Chứng mình MN \(\le\frac{BC+AD}{2}\)
xét trường hợp tứ giác lồi ABCD không phải là hình thang
nối BD , gọi I là trung điểm của BD
xét tam giác ABD ta được
M là trung điểm AB (GT)
I là trung điểm của BD ( như cách gọi)
=> MI là đường trung bình của tam giác ABD
=> MI // AD ; MI = 1/2 AD (1)
xét tam giác DBC ta có
I là trung điểm của BD ( như cách gọi)
N là trung điểm của CD ( GT)
=> NI là đường trung bình của tam giác DBC
=> NI //BC ; NI = 1/2BC (2)
cộng theo vế của (1) và (2) ta được
NI + MI = 1/2 (AD + BC) hay \(MI+NI=\frac{BC+AD}{2}\)(3)
vì ABCD không phải là hình thang nên I không thuộc MN hay 3 điểm I,M,N không thẳng hàng. Ta được tam giác MIN.
áp dụng định lí bất đẳng thức tm giác vào tm giác MIN ta có
MN < MI + NI (4)
kết hợp (3) và (4) ta được
\(MN<\frac{BC+AD}{2}\)(5)
* Xét trường hợp ABCD là hình thang ( AD // BC)
ta có
M là trung điểm AB,
N là trung điểm CD
=> MN là đường trung bình của hình thang ABCD
=> \(MN=\frac{BC+AD}{2}\) (6)
kết hợp (5) và (6) ta được
\(MN\le\frac{BC+AD}{2}\)
Cho tứ giác ABCD. Gọi M, N là trung điểm của AD, BC. Chứng minh \(MN\le\frac{AB+CD}{2}\). Dấu "=" xảy ra khi nào?
Nối đường chéo BD của tứ giác ABCD. Lấy I là trung điểm của đoạn BD, nối IM và IN.
Xét \(\Delta\)BAD: I là trung điểm BD; M là trung điểm AD => IM là đường trung bình của tam giác BAD
=> IM = 1/2 AB. Tương tự ta có: IN = 1/2 CD \(\Rightarrow IM+IN=\frac{AB+CD}{2}\)
Mà \(IM+IN\ge MN\)(T/c 3 điểm) \(\Rightarrow\frac{AB+CD}{2}\ge MN\)
Vậy \(MN\le\frac{AB+CD}{2}\)(đpcm).
Dấu "=" xảy ra <=> I thuộc đoạn MN <=> MN // AB // CD (Do IM // AB và IN // CD) <=> Tứ giác ABCD là hình thang.
cho tứ giác abcd. gọi m,n, p, q lần lượt là trung điểm của ab, bc, cd, da.
a) c/m : mn // pq và mn = pq
b) c/m : mn \(\le\)\(\frac{ad+bc}{2}\)
c) tìm điểu kiện của tứ giác abcd để mn = \(\frac{ad+bc}{2}\)
b2. Nếu tứ giác ABCD có M,N là trung điểm của AD, BC và MN =1/2(AB+CD). Vậy tứ giác ABCD là tứ giác đặc biệt gì?
Cho tứ giác ABCD(AB không song song vs CD). Gọi M, N lần lượt là trung điểm của AB và CD biết MN = \(\frac{BC+AD}{2}\) .CMR: ABCD là hình thang.
Trả lời
Vì \(\hept{\begin{cases}AM=MB\\DC=NC\\MN=\frac{BC+AD}{2}\end{cases}}\Rightarrow MN\) là đường trung bình của hình thang
\(\Rightarrow ABCD\)là hình thang ( đpcm )
Thông cảm nha mọi người
tôi sẽ vẽ lại hình cho nha
Study well
cho tứ giác ABCD,M và N là trung điểm của AB và CD,MN=(AD+BC):2.CM ABCD là hình thang
1. Cho tứ giác ABCD. Gọi M,N là trung điểm của AD và BC. Biết MN=(AB+CD):2. C/M ABCD là hình thang
Cho tứ giác ABCD. Gọi M, N là trung điểm của AD và BC, biết MN =(AB + CD)/2. C/M ABCD là hình thang
gọi I là giao điểm của MN và BD
ta có
MN=(AB + DC)/2
=> MI + IN = AB/2 + DC/2
=> MI = AB/2 và IN = DC/2
=> MI và IN là đường tb của tam giác ABD và tam giác BDC
=> MI // AB và IN // DC
vì M,I,N thẳng hàng nên => AB // DC => tứ giác ABCD là hình thang
Bài 1. Cho tứ giác ABCD . Gọi M, N lần lượt là trung điểm của AB , CD . Biết MN = \(\frac{AD+DE}{2}\). Chứng minh tứ giác ABCD là hình thang .
Trên ta BN lấy điểm E sao cho N là trung điểm của BE .
\(\Delta NBC\)và \(\Delta NED\) có :
NC = ND ( gt )
\(\widehat{BNC}=\widehat{DNE}\)( hai góc đối đỉnh )
NB = NE ( theo cách vẽ ) .
Do đó \(\Delta NBC=\Delta NED\)( c.g.c ) , suy ra DE = BC .
Theo giả thiết MN = \(\frac{AD+BC}{2}\), vì thế suy ra MN = \(\frac{AD+DE}{2}\) (1)
Mặt khác trong tam giác ABE thì MN là đường trung bình của tam giá đó nên MN = \(\frac{AE}{2}\). (2)
Từ (1) và (2) suy ra : AE = AD + DE . Đẳng thức này chỉ xảy ra khi ba điểm A,D,E thẳng hàng .
Lại do \(\Delta NBC\)= \(\Delta NED\)nên \(\widehat{BCD}=\widehat{EDC}\)do đó DE // BC ( hai góc ở vị trí so le trong bằng nhau ) , từ đó suy ra AD // BC.
Vậy tứ giác ABCD là hình thang ( đpcm ).
cho tứ giác abcd có m n p q lần lượt là trung điểm của ad ab bc cd.
chứng minh mn//ac và mn = 1 phần 2 ac
,chứng minh rằng mn=pq và mn//pq