Tìm x biết:
\(\frac{x-2}{2015}+\frac{x-3}{2014}=\frac{x-1}{1013}\)
Tìm x biết:
\(\frac{x-1}{2016}+\frac{x-2}{2015}-\frac{x-3}{2014}=\frac{x-4}{1013}\)
\(\frac{x-1}{2016}+\frac{x-2}{2015}-\frac{x-3}{2014}=\frac{x-4}{2013}\)
\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2016}-1\right)-\left(\frac{x-3}{2014}-1\right)=\left(\frac{x-4}{2013}-1\right)\)
\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}=\frac{x-2017}{2013}\)
\(\frac{x-2017}{2016}+\frac{x-2017}{2015}+\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
\(x-2017=0\left(vì\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\right)\)
x=2017
Tìm x biết :
a ) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\left(\frac{2}{3}x+\frac{3}{4}\right)< 0\)
b) \(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x+3}{2013}+\frac{x+2}{2014}\)
Tìm x biết:
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x+2015=\frac{2016}{1}+\frac{2017}{2}+...+\frac{4029}{2014}+\frac{4030}{2015}\)
Tìm x biết
\(\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2014}+\frac{1}{2015}\right).x=\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}\)
có 2014/1+2013/2+2012/3+...+2/2013+1/2014=[1+(2013/2)]+[1+(2012/3)]+...+[1+(2/2013)]+[1+(1/2014)]+1
=2015/2+2015/3+...+2015/2014+2015/2015=2015.[1/2+1/3+..+1/2015)
vậy (1/2+1/3+...+1/2015).x=(1/2+1/3+...+1/2015).2015
x=2015
Tìm x biết: \(\frac{x+4}{2012}+\frac{x+3}{2013}+\frac{x+2}{2014}+\frac{x+1}{2015}\)
\(\frac{x+4}{2012}+\frac{x+3}{2013}=\frac{x+2}{2014}+\frac{x+1}{2015}\)
\(\Rightarrow\frac{x+4}{2012}+1+\frac{x+3}{2013}+1=\frac{x+2}{2014}+1+\frac{x+1}{2015}+1\)
\(\Rightarrow\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)
\(\Rightarrow\frac{x+2016}{2012}+\frac{x+2016}{2013}-\left(\frac{x+2016}{2014}+\frac{x+2016}{2015}\right)=0\)
\(\Rightarrow\left(x+2016\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\ne0\)
\(\Rightarrow x+2016=0\)
\(\Rightarrow x=-2016\)
tìm x biết
\(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\\ \)
\(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\)
\(\Leftrightarrow\frac{x-1}{2016}-1+\frac{x-2}{2015}-1+\frac{x-3}{2014}-1+...+\frac{x-2016}{1}-1=0\)
\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}+\frac{x-2017}{2014}+...+\frac{x-2017}{1}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+1\right)=0\)
Có: \(\frac{1}{2016}+\frac{1}{2015}+...+1\ne0\)
\(\Rightarrow x-2017=0\)
\(\Rightarrow x=2017\)
<=> \(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+....+\frac{x-2016}{1}-2016=0\)\(=0\)
<=> \(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)+...+\left(\frac{x-2016}{1}-1\right)=0\)
<=> \(\frac{x-2017}{2016}+\frac{x-2017}{2015}+...+\frac{x-2017}{1}=0\)
<=> \(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}\right)=0\)
<=> \(x-2017=0\)\(\left(do\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}>0\right)\)
<=> \(x=2017\)
Vậy x = 2017
đúng thì
Tìm x,biết:
\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+2}{2016}+\frac{x+1}{2017}\)
\(\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)
\(\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}+\frac{x+2018}{2017}=0\)
\(x+2018.\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\right)=0\)
\(\Rightarrow x+2018=0\)
\(\Rightarrow x=-2018\)
\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+2}{2016}+\)\(\frac{x+1}{2017}\)
\(\Rightarrow\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2016}+\frac{x+2018}{2017}\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}-\frac{x+2018}{2017}=0\)
\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)=0\)
\(M\text{à:}\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\ne0\)
\(\Rightarrow x+2018=0\Rightarrow x=-2018\)
\(\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2016}+\frac{x+2018}{2017}\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}-\frac{x+2018}{2017}=0\)
\(\Rightarrow\left(x+2018\right).\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
=> x+2018=0
=> x=-2018
Tìm x biết:
\(\frac{x-1}{2017}+\frac{x-2}{2016}-\frac{x-3}{2015}=\frac{x-4}{2014}\)
Tìm x biết
\(\frac{x-1}{2015}+\frac{x-2}{2014}-\frac{x-3}{2013}=\frac{x-4}{2012}\)
CÓ: \(\frac{x-1}{2015}+\frac{x-2}{2014}-\frac{x-3}{2013}-\frac{x-4}{2012}=0\)\(0\)
<=>\(\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)-\left(\frac{x-3}{2013}-1\right)-\left(\frac{x-4}{2012}-1\right)=0\)
<=>\(\frac{x-2016}{2015}+\frac{x-2016}{2014}-\frac{x-2016}{2013}-\frac{x-2016}{2012}=0\)
<=>\(\left(x-2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
Do:\(\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)\ne0\)
=>\(x-2016=0\)
<=>\(x=2016\)