Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Khánh Linh
Xem chi tiết
LÊ VĂN THINH
Xem chi tiết
đinh thị bảo ngọc
Xem chi tiết
Nguyen Thanh Tung
Xem chi tiết
Nguyễn Tất Đạt
30 tháng 5 2017 lúc 15:28

Trong phép chia cho 1000 có 1000 số dư là 0,1,2,3,...,999.

Xét 1001 số: 3,32,33,...,31001 thì tồn tại 2 số có cùng số dư trong phép chia cho 1000.

Gọi 2 só đó là 3a và 3b (1=<a=<b=<1001). 3a-3b chia hết cho 1000

=> 3b.(3a-b-1) chia hết cho 1000.

Ta có: (3b,1000)=1 => 3a-b-1 chia hết cho 1000 => 3a-b có tậm cùng là 0001.

phan thị hàn an
Xem chi tiết

Trong phép chia cho 1000 có 1000 số dư là 0,1,2,3,...,999.

Xét 1001 số: 3,32,33,...,31001 thì tồn tại 2 số có cùng số dư trong phép chia cho 1000.

Gọi 2 só đó là 3a và 3b (1=<a=<b=<1001). 3a-3b chia hết cho 1000

=> 3b.(3a-b-1) chia hết cho 1000.

Ta có: (3b,1000)=1 => 3a-b-1 chia hết cho 1000 => 3a-b có tậm cùng là 0001.

Khách vãng lai đã xóa
phan thị hàn an
Xem chi tiết
Cấn Ngọc Minh
Xem chi tiết
nguyen cao bao
21 tháng 7 2019 lúc 9:50

3k=(...01)

do 3*0=0 nen k phai thuoc n*

Trần Phương Linh
Xem chi tiết
tth_new
Xem chi tiết
Chủ acc bị dính lời nguy...
15 tháng 4 2019 lúc 20:23

bn tham khảo câu hỏi này nhé:

https://olm.vn/hoi-dap/detail/98207379947.html

k nha

^-^

zZz Cool Kid_new zZz
15 tháng 4 2019 lúc 21:54

Xét 1001 số \(3;3^2;3^3;.....;3^{1001}\) thì tồn tại 2 số khi chia cho 1000 có cùng số dư.

Giả sử 2 số \(3^m;3^n\left(1\le n< m\le1001\right)\) khi chia cho 1000 có cùng số dư.

Khi đó \(3^m-3^n⋮1000\)

\(\Rightarrow3^n\left(3^{m-n}-1\right)⋮1000\)

Lại có  \(\left(3^n;1000\right)=1\Rightarrow3^{m-n}-1⋮1000\)

\(\Rightarrow3^{m-n}=\overline{....001}\)

\(\Rightarrowđpcm\) 

Nguyễn Lê Khánh Linh
29 tháng 3 2020 lúc 10:23

Gọi dãy số: 3, 32, 33, …, 31001. Theo nguyên lý Di-rich-le luôn tồn hai số trong 1001 số trên khi chia cho 1000 có cùng số dư.

Giả sử hai số: 3m, 3n, trong đó: 1 ≤ n < m ≤ 1001.

=>3m – 3n ⋮ 1000

=> 3n.(3m-n – 1) ⋮ 1000

Vì 3n ko chia he^'t cho 1000 nên suy ra: 3m-n – 1 ⋮ 1000

=> 3m-n – 1 = 1000k (k \(\in\) N*)

=> 3m-n = 1000k + 1

=> 3m-n có chữ số tận cùng là 001

=> 3k có chữ số tận cùng là 001 (đpcm)

chu'c hok to^'t

Khách vãng lai đã xóa