cmr với mọi số tự nhiên n thì 8*5^2n+11*6^n chia hết cho 19
Bài 1. CMR với mọi số tự nhiên n thì:
a, 11^n+2 + 12^2n+1 chia hết cho 133
b, 5^n+2 + 26.5^n + 8^2n+1 chia hết cho 59
c, 7.5^n + 12.6^n chia hết cho 19
Bài 2. Tìm số tự nhiên n sao cho 10^20022n - 1 chia hết cho 9
CMR: với mọi số tự nhiên n thì E=\(6^{2n}+19^n-2^{n+1}\) chia hết cho 17
Ta có: \(E=36^n+19^n-2^n\cdot2\)
Mặt khác: \(36\equiv19\equiv2\)(mod 17)
Do đó: \(VT\equiv2^n+2^n-2^n\cdot2\equiv0\)(mod 17)
Vậy .................
CMR: Với mọi số tự nhiên n ta luôn có: A=5^n(5^n + 1) - 6^n(3^n+2^n) chia hết cho 91; B=6^2n + 19^n - 2^n+1 chia hết cho 17
Bài 1)với n thuộc số tự nhiên. cmr: 20n+16n-3n-1 chia hết cho 323
Bài 2) cmr với mọi n thì:
a)11(n+2)+2(2n+1) chia hết cho 133
b)5(n+2)+2.6n chia hết cho 19
c)7.52n+12. 6n chia hết cho 19
bài 3)tìm n sao cho
a)3(2n+3)+2(4n+1) chia hết cho 25
b)5n-2n chia hết cho 9
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
Chứng minh với mọi số tự nhiên n:7 x 5^2n+12 x 6^n chia hết cho 19
Bài 1.Tìm số tự nhiên n sao cho: 2n + 7 chia hết cho n + 2
Bài 2.Chứng minh rằng:
a/ Với mọi số tự nhiên n thì (n+3)(n+10) chia hết cho 2
b/ Với mọi số tự nhien n thì (n+3)(n+6) chia hết cho 2
c/ Với mọi số tự nhiên n thì (5n+7)(4n+6) chia hết cho 2
cmr với mọi số tự nhiên n thì:A= 5n+2+26* 5n+82n+1 chia hết cho 59
cmr với mọi số tự nhiên n thì (n+ 3 ) (n+5) (n + 8) chia hết cho 3