tìm ĐKXĐ \(\frac{1}{\sqrt{x-3}}+\frac{3x}{\sqrt{5-x}}\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Tìm ĐKXĐ:
a; \(\sqrt[4]{\frac{2}{-7+3x}}\)
b; \(\sqrt{x-1}+\frac{\sqrt[3]{x+1}}{\sqrt{5-x}}\)
c; \(\sqrt[8]{2x-1}-\sqrt[3]{3-5x}\)
d; \(\sqrt{\frac{3x-6-2x}{\sqrt[3]{1-x}}}\)
cho biểu thức \(A=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a,Tìm ĐKXĐ của A
b,Rút gon A
c,Tìm x để \(A\le\frac{-1}{3}\)
d.Tìm giá trị nhỏ nhất của A
\(A=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\) ĐKXĐ : x > 0 , x khác 9
\(A=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(A=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(A=\frac{-3\sqrt{x}}{\sqrt{x}+3}.\frac{1}{\sqrt{x}+1}\)
\(A=\frac{-3\sqrt{x}}{x+4\sqrt{x}+4}\)
\(A=\frac{-3\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\)
a) ĐKXĐ : x>hoặc = 0 ; x khác 9
Còn câu b,c,d để vài bữa mình làm tiếp cho bây giờ mình đi ngủ đã buồn ngủ quá !
----------------- -Học tốt-----------------
\(A=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\)
1) Tìm ĐKXĐ. Rút gọn A.
2)Tính A khi \(x=9-4\sqrt{2}\)
3)Tìm Xđể A<\(\frac{1}{3}\)
tìm đkxđ và rút gọn
A=\(\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}\right):\frac{x+1}{x-1}\)
B=\(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)
C=\(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\)
D=\(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
E=\(\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\)
GIÚP MK NHA!!!!!
P=[\(\frac{2\sqrt{x}}{\sqrt{x}+3}\)+ \(\frac{\sqrt{x}}{\sqrt{x}-3}\)- \(\frac{3x+3}{x-9}\)] : [\(\frac{2\sqrt{x}-2}{\sqrt{x}-3}\)- 1 ]
a, tìm ĐKXĐ và rút gọn P
b,tìm x để P có giá trị nhỏ nhất
cho biểu thức \(p=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}\)
a;Tìm ĐKXĐ và rút gọn P
b;Tim giá trị của p khi x = 25
bài2
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
a;tìm ĐKXĐ và rút gọn biể thức a
b; tìm a khi x=9
bài 3
cho biểu thức \(p=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right)\div\frac{1}{\sqrt{x}+1}\)
a nếu ĐKXĐ và rút gọn biểu thức p
b tinh các giá trị của x để p =\(\frac{5}{4}\)
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
Bài 3 : \(x\ge0;x\ne1\)
\(P=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\)
\(=\left(\frac{2+\sqrt{x}}{x-1}\right).\left(\sqrt{x}+1\right)=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
b, Ta có : \(P=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{5}{4}\Rightarrow4\sqrt{x}+8=5\sqrt{x}-5\)
\(\Leftrightarrow\sqrt{x}=13\Leftrightarrow x=169\)(tmđk )
Tìm ĐKXĐ của các biểu thức :
a/ \(\frac{1}{\sqrt{2x-x^2}}\)
b/ \(\frac{1}{\sqrt{x-3}}+\frac{3x}{\sqrt{5-x}}\)
c/ \(\frac{1}{\sqrt{x^2-5x+6}}\)
d/ \(\sqrt{6x-1}+\sqrt{x+3}\)
a/ 2x-x2>0
\(\Leftrightarrow\) x(2-x)>0
\(\Leftrightarrow\) 0<x<2
b/ \(\left\{{}\begin{matrix}x-3>0\\5-x>0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x>3\\x< 5\end{matrix}\right.\)\(\Leftrightarrow\) 3<x<5
c/ x2-5x+6>0
\(\Leftrightarrow\) (x-3)(x-2)>0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}6x-1>0\\x+3>0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x>\frac{1}{6}\\x>-3\end{matrix}\right.\)
\(\Leftrightarrow\) x > \(\frac{1}{6}\)
Tìm ĐKXĐ của các biểu thức sau:
\(a,\frac{1}{1-\sqrt{x^2-3}}\)
\(b,\frac{x-1}{2-\sqrt{3x+1}}\)
\(a,\)\(\frac{1}{1-\sqrt{x^2-3}}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}x^2-3\ge0\\x^2-3\ne1\end{cases}}\).
\(x^2-3\ne1\)\(\Rightarrow x^2\ne4\)\(\Rightarrow x\ne\pm2\)
\(x^2-3\ge0\)\(\Rightarrow\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\ge0\)
Chia trường hợp ra làm nốt nhé
....
\(b,\)\(\frac{x-1}{2-\sqrt{3x+1}}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}3x+1\ge0\\\sqrt{3x+1}\ne2\end{cases}}\)
\(3x+1\ge0\)\(\Rightarrow3x\ge-1\)
\(\Rightarrow x\ge\frac{-1}{3}\)
\(\sqrt{3x+1}\ne2\)\(\Rightarrow|3x+1|\ne4\)\(\Rightarrow\hept{\begin{cases}3x-1\ne4\\3x-1\ne-4\end{cases}\Rightarrow\hept{\begin{cases}3x\ne5\\3x\ne-3\end{cases}\Rightarrow}\hept{\begin{cases}x\ne\frac{5}{3}\\x\ne-1\end{cases}}}\)
\(\Rightarrow x\ge-\frac{1}{3}\)và \(x\ne\frac{5}{3}\)