Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh hoang cong
Xem chi tiết
girl yêu
27 tháng 8 2019 lúc 8:38

Cảm ơn OLM đã trừ điểm https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html

Vô trangh cá nhân của e sẽ thấy đc những câu trả lời "siêu hay" của con chóhttps://olm.vn/thanhvien/kimmai123az

minh hoang cong
27 tháng 8 2019 lúc 9:34

Bạn nói mih á girl yêu

girl yêu
27 tháng 8 2019 lúc 9:40

Ko, mk nói con Mệt mỏi, link nó nek: https://olm.vn/thanhvien/kimmai123az

xinh Meo
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 21:02

a: Xét ΔPMB và ΔPQA có

\(\widehat{PBM}=\widehat{PAQ}\)

PB=PA

\(\widehat{MPB}=\widehat{QPA}\)

Do đó: ΔPMB=ΔPQA

Suy ra: MB=AQ

Xét tứ giác AMBQ có 

MB//AQ

MB=AQ

Do đó: AMBQ là hình bình hành

mà \(\widehat{MAQ}=90^0\)

nên AMBQ là hình chữ nhật

Ngô Nguyễn Ngọc Tuệ
26 tháng 11 2021 lúc 11:26

Câu a có r mk ko ghi lại nx nhe

b) Ta có AQBM là HCN (CMa)

=> ^AQB=90hay BQ ⊥ AC  

=> BQ là đường cao của ΔABC

Mà H là giao điểm của 2 đường cao AI và BQ của ΔABC (gt)

=> H là trực tâm của ΔABC

=> CH cũng là đường cao của ΔABC (H là trực tâm; H ∈ CH)

=> CH ⊥ AB (đpcm)

Bống DK
Xem chi tiết
ThanhNghiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 20:29

loading...  loading...  

nguyễn hữu kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 20:42

a: Xét ΔPMB và ΔPQA có

\(\widehat{PBM}=\widehat{PAQ}\)(hai góc so le trong, BM//AC)

PB=PA

\(\widehat{MPB}=\widehat{QPA}\)(hai góc đối đỉnh)

Do đó: ΔPMB=ΔPQA

=>PM=PQ

=>P là trung điểm của MQ

Xét tứ giác AMBQ có

P là trung điểm chung của AB và MQ

=>AMBQ là hình bình hành

Hình bình hành AMBQ có \(\widehat{MAQ}=90^0\)

nên AMBQ là hình chữ nhật

b: Ta có: AMBQ là hình chữ nhật

=>BQ\(\perp\)AQ tại Q

=>BQ\(\perp\)AC tại Q

Xét ΔABC có

BQ,AI là các đường cao

BQ cắt AI tại H

Do đó: H là trực tâm của ΔABC

=>CH\(\perp\)AB

c: Ta có: AMBQ là hình chữ nhật

=>AB=QM 

mà \(PQ=\dfrac{QM}{2}\)

nên \(PQ=\dfrac{AB}{2}=PA\)(1)

Ta có: ΔAIB vuông tại I

mà IP là đường trung tuyến

nên IP=PA(2)

Từ (1) và (2) suy ra PI=PQ

=>ΔPIQ cân tại P

Bù.cam.vam
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2023 lúc 13:44

a: Xét ΔPBM và ΔPAQ có

\(\widehat{PBM}=\widehat{PAC}\)

PB=PA

\(\widehat{BPM}=\widehat{APQ}\)

Do đó: ΔPBM=ΔPAQ

=>PM=PQ

Xét tứ giác AQBM có

P là trung điểm chung của AB và QM

=>AQBM là hình bình hành

=>BQ//AM

=>HQ//AM

=>AQHM là hình thang

Hoàng ngọc tăng huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2023 lúc 20:12

a: Xét ΔPMB và ΔPQA có

\(\widehat{PBM}=\widehat{PAQ}\)

PB=PA

\(\widehat{MPB}=\widehat{QPA}\)

Do đó: ΔPMB=ΔPQA

=>PM=PQ

Xét ΔPBQ và ΔPAM có

PB=PA

\(\widehat{BPQ}=\widehat{APM}\)

PQ=PM

Do đó: ΔPBQ=ΔPAM

=>\(\widehat{PBQ}=\widehat{PAM}\)

mà hai góc này là hai góc so le trong

nên BQ//AM

=>HQ//AM

=>AQHM là hình thang

b: Xét tứ giác AMBQ có

AQ//BM

BQ//AM

Do đó: AMBQ là hình bình hành

phog lop 8
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 20:40

a,b: Xét ΔPMB và ΔPQA có

\(\widehat{PBM}=\widehat{PAQ}\)

PB=PA

\(\widehat{MPB}=\widehat{QPA}\)

Do đó: ΔPMB=ΔPQA

=>PM=PQ

=>P là trung điểm của MQ

Xét tứ giác AQBM có

P là trung điểm chung của AB và QM

=>AQBM là hình bình hành

=>AM//BQ

=>BQ\(\perp\)AC

Xét tứ giác AQHM có HQ//AM

nên AQHM là hình thang