tìm điều kiện xác định của\(\frac{1}{1-\sqrt{x^2-3}}\)
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
1. Nêu Điều kiện xác định và rút gọn biểu thức A
2. Tính giá trị của biểu thức A khi x=9
3. Khi x thỏa mãn điều kiện xác định . hãy tìm giá trị nhỏ nhất của biểu thức B , với B=A (x-1)
Tìm điều kiện xác định
A=\(\left(\sqrt{1-x}+\frac{3}{\sqrt{x+1}}\right):\left(1+\frac{3}{\sqrt{1-x^2}}\right)\)
ĐKXĐ : \(1-x>0\Rightarrow x<1\) và \(1+x>0\Rightarrow x>-1\)
Vậy -1 < x < 1
Cho \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+2\sqrt{x}+1}\right):\frac{\sqrt{x}-3}{x-1}\)
a) Tìm điều kiện của x để giá trị của A được xác định
b) Rút gọn A
a,
\(A\Leftrightarrow\)\(\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}\right)^2+2\sqrt{x}+1}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)(1)
Để A xđ <=> \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\\\sqrt{x}-3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)
b , (1) <=> \(\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)
<=> \(\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1-\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)
<=> \(\frac{2}{x-1}\times\frac{x-1}{\sqrt{x}-3}\)
<=> \(\frac{2}{\sqrt{x}-3}\)
Tìm điều kiện xác định của \(\sqrt{\frac{x-2}{x^2-2x+1}}\)
\(\frac{x-2}{x^2-2x+1}\ge0\)
\(\frac{x-2}{\left(x-2\right)^2}\ge0\)
\(\hept{\begin{cases}x-2\ge0\\x-2\ne0\end{cases}}\)
\(\Rightarrow x>2\)
hoc lop may roi đại lộc .
Ta nhận xét thấy mẫu luôn lớn hơn hoặc bằng 0 nên ta có
ĐKXĐ là
\(\hept{\begin{cases}x-2\ge0\\x^2-2x+1\ne0\end{cases}}\Leftrightarrow x\ge2\)
ĐKXĐ:x^2-2x+1<>0
x^2-x-x+1<>0
x(x-1)-(x-1)<>0
(x-1)(x-1)<>o
x-1<>0
x<>1
Tìm điều kiện xác định của biểu thức sau:
a)\(\frac{1}{1-\sqrt{x^2}-3}\)
b)\(\frac{\sqrt{16-x^2}}{\sqrt{2x+1}}+\sqrt{x^2-8x+14}\)
Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó
\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)
b)
\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)
\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)
Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)
tìm điều kiện xác định căn thức
\(\sqrt{\frac{2}{3}x-\frac{1}{5}}\)
ĐKXD : \(\sqrt{\frac{2}{3}x-\frac{1}{5}}\ge0\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{5}\ge0\)
\(\Leftrightarrow\frac{2}{3}x\ge\frac{1}{5}\\ \Leftrightarrow x\ge\frac{3}{10}\)
Tìm điều kiện xác định.
\(y=\frac{1}{\sqrt{x^2-1-\sqrt{x^2+6x+3}}}\)
\(x^2+6x+3\ge0\Rightarrow x^2+6x+9-6\ge0\Rightarrow\left(x+3\right)^2-6\ge0\) (luôn đúng)
nên \(x^2-1>0\Rightarrow x^2>1\) => -1 < x < 1
Vậy điều kiện : -1 < x < 1
\(\left(\frac{\sqrt{x}-2}{2\sqrt{x}-2}+\frac{3}{2\sqrt{x}+2}-\frac{\sqrt{x}+3}{2\sqrt{x}+2}\right):\left(1-\frac{\sqrt{x}-3}{x-1}\right)\)
a . Tìm điều kiện xác định
b. Rút gọn biểu thức
Tìm điều kiện xác định của biểu thức : B = \(\sqrt{x^2-3x}\) + \(\sqrt{\dfrac{x-5}{x-1}}\)- \(\sqrt[3]{2x-1}\)