Cho a là số nguyên, biết a chia het cho 2 nhưng không chia hết cho 3. Tìm dạng chung của a.
1 . tìm 2 số biết hiệu của chúng là 1554 còn tổng chúng có dạng abcd chia hết cho 2,5,9
2. tìm số tự nhiên gồm 3 chữ số . biết rằng số đó chia hết cho 45 và khi viết nó ngược lại được 1 số mới cũng chia hết cho 45
3. khi sinh con,cha 30 tuổi.hỏi hiện nay con bao nhiêu tuổi,biết 4 năm sau n6ữa tuổi của cha gấp 3 lần tuổi con
a)tìm số tự nhiên lớn nhất có ba chữ số sao cho khi chia nó cho 2 ,cho 3 ,cho 4 ,cho 5 ,cho 6 ta được các số dư theo thứ tự là 1,2,3,4,5
b)tìm dạng chung của các số tự nhiên a chia cho 4 thì dư 3, chia cho 5 thì dư 4 ,chia cho 6 thì dư 5 ,chia hết cho 13
a)tìm số tự nhiên lớn nhất có ba chữ số sao cho khi chia nó cho 2 ,cho 3 ,cho 4 ,cho 5 ,cho 6 ta được các số dư theo thứ tự là 1,2,3,4,5
b)tìm dạng chung của các số tự nhiên a chia cho 4 thì dư 3, chia cho 5 thì dư 4 ,chia cho 6 thì dư 5 ,chia hết cho 13
Gọi số cần tìm là abc. Ta có abc+1 chia hết cho 2,3,4,5,6.
2=2
3=3
4=2^2
5=5
6=2.3. BCNN(2,3,4,5,6)=2^2.3.5=60. =>abcEB(60)=0,60,...
Vì abc+1 lớn nhất nên abc+1=960 =>abc=959.
a) Tìm tất cả các số nguyên a biết : (6a+1) chia hết (3a-1)
b) Tìm hai số nguyên a,b biết: a>0 và a(b-2)=3
c) Tìm số nguyên n sao cho 2n-1 là bội của n+3
a)tìm số tự nhiên lớn nhất có ba chữ số sao cho khi chia nó cho 2 ,cho 3 ,cho 4 ,cho 5 ,cho 6 ta được các số dư theo thứ tự là 1,2,3,4,5
b)tìm dạng chung của các số tự nhiên a chia cho 4 thì dư 3, chia cho 5 thì dư 4 ,chia cho 6 thì dư 5 ,chia hết cho 13
gọi cần tìm là n (100 <n<999) ta có
n-1 chia hết 2 (n-1)+2 chia hết 2 n+1(vì 2-1=1) chia hết 2
n-2 chia hết 3=> (n-2)+3 chia hết 3=> n+1(vì 3-2=1)chia hết 3
n-3 chia hết 4 (n-3)+4 chia hết 4 n+1 chia hết 4
n-4 chia hết 5 (n-4)+5 chia hét 5 n+1 chia hết 5
n-5 chia hết 6 (n-5)+6 chia hết 6 n+1 chia hết 6
=>n+1 thuộc BC(2,3,4,5,6)
2=2, 3=3, 4=22, 5=5,6=2.3 => BCNN(2,3,4,5,6)=22.3.5=60
B(2,3,4,5,6)=BC(60)={0,60,120,180,...,960,1020,...}
n=-1,59,119,...,959,1019,...
vì 100<n<999 nên n=959
Câu 1: Tìm số có 2 chữ số biết số đó gấp 2 lần tích của các chữ số của nó.
Câu 2: Tìm số lớn nhất có 3 chữ số thỏa mãn điều kiện số đó chia hết cho 9 và tổng các chữ số hàng trăm với chữ số hàng đơn vị chia hết cho 5.
Câu 3:
A: Tại sao 2 số tự nhiên có tổng không chia hết cho 2 thì tích của chúng lại chia hết cho 2?
B: Số 2006 có thể là tích của ba số tự nhiên liên tiếp hay không?
Bạn nào biết câu nào thì giúp mình làm câu ấy nha.
âu 1:
Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:
AB = 2 × A × B
Để giải phương trình này, ta thực hiện các bước sau:
Ta có A và B đều là các chữ số từ 1 đến 9, do đó AB là một số có hai chữ số từ 10 đến 99. Vì AB = 2 × A × B, nên A và B đều khác 0. Do đó, ta có thể giả sử A > B mà không mất tính tổng quát. Khi đó, ta có A < 5 (nếu A ≥ 5 thì AB ≥ 50, vượt quá giới hạn của số có hai chữ số). Với mỗi giá trị của A từ 1 đến 4, ta tính được giá trị tương ứng của B bằng cách chia AB cho 2A. Nếu B là một số nguyên từ 1 đến 9 thì ta đã tìm được một giá trị của AB.Kết quả là AB = 16 hoặc AB = 36.
Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.
Câu 2:
Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:
ABC chia hết cho 9. A + C chia hết cho 5.Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:
Vì ABC chia hết cho 9, nên tổng các chữ số của ABC cũng chia hết cho 9. Do đó, ta có A + B + C = 9k (với k là một số nguyên dương). Từ điều kiện thứ hai, ta suy ra A + C là một trong các giá trị 5, 10 hoặc 15. Nếu A + C = 5 thì B = 4 và C = 1. Như vậy, ta có ABC = 401, không chia hết cho 9. Nếu A + C = 10 thì B = 0 và tổng các chữ số của ABC là 10, do đó ABC chia hết cho 9. Ta có ABC = 990. Nếu A + C = 15 thì B = 0 và tổng các chữ số của ABC là 18, do đó ABC chia hết cho 9. Ta có ABC = 999.Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.
Câu 3:
A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:
ab = 2m × 2n = 2(m + n)
Vì m + n là một số tự nhiên, nên ab chia hết cho 2.
B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n
Tìm dạng chung của các số tự nhiên a chia cho 4 dư 3 , chia cho 5 dư 4 , chia cho 6 dư 5 và a chia hết cho 13. Từ đó hãy tìm số a nhỏ nhất thỏa mãn bài toán
Tìm các số nguyên a , biết :
a/ a+2 là ước của 7
b/ 2a+5 chia hết cho a-2
c/ a^2 +3a +1 chia hết cho a+2
d/ n^2-7 phần n+3 ( nhận giá trị nguyên )
a) Trong phép chia cho 2 số dư có thể bằng 0 và 1. Trong mỗi phép chia cho 3, cho 4, cho 5, số dư có thể bằng bao nhiêu?
b) Dạng tổng quát của số chia hết cho 2 là 2k, dạng tổng quát của số chia cho 2 dư 1 là 2k+1 với k thuộc N. Hãy viết dạng tổng quát của số chia hết cho số chia cho 3 dư 1, số chia cho 3 dư 2