Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần văn quyết
Xem chi tiết
Nguyễn Huỳnh Minh Thư
Xem chi tiết
shitbo
30 tháng 6 2021 lúc 17:11

1) Có nhận xét sau:

\(\frac{1}{a\sqrt{a+1}+\left(a+1\right)\sqrt{a}}=\frac{1}{\sqrt{a^2+a}\left(\sqrt{a}+\sqrt{a+1}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a^2+a}}\)

\(=\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a+1}}.\)Do đó biểu thức có giá trị bằng: \(\frac{1}{1}-\frac{1}{\sqrt{2}}+..-\frac{1}{\sqrt{1999}}=1-\frac{1}{\sqrt{1999}}.\)

Khách vãng lai đã xóa
shitbo
30 tháng 6 2021 lúc 17:13

2) Có nhận xét sau:

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\sqrt{a+1}-\sqrt{a}.\) Thay vào biểu thức ta được biểu thức

có giá trị bằng: \(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{1999}-\sqrt{1998}=\sqrt{1999}-1.\)

Khách vãng lai đã xóa
Nguyễn Huỳnh Minh Thư
Xem chi tiết
Hoàng Lê Bảo Ngọc
4 tháng 10 2016 lúc 16:49

Bạn áp dụng \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)với n = 1, 2 , 3 , ... , 1999

Nguyễn Huỳnh Minh Thư
Xem chi tiết
Pham Thang
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
Phước Lộc
12 tháng 3 2020 lúc 10:35

\(2\frac{1998}{1999}\)là hỗn số hay \(2.\frac{1998}{1999}\)hả bạn?

Khách vãng lai đã xóa
Nguyễn Ngọc Linh
12 tháng 3 2020 lúc 10:41

Là \(2.\frac{1998}{1999}\)

Khách vãng lai đã xóa
Phước Lộc
12 tháng 3 2020 lúc 10:43

ok bạn đợi mình tí nhé :>

Khách vãng lai đã xóa
le thi khanh huyen
Xem chi tiết
Incursion_03
1 tháng 10 2018 lúc 23:48

Với a , b , c là số hữu tỉ t/m a = b + c ta luôn có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)

Thật vậy : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-2\left(\frac{1}{bc}-\frac{1}{ac}-\frac{1}{ab}\right)}\)

                                                       \(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-\frac{2.abc\left(a-b-c\right)}{a^2b^2c^2}}\)(quy đồng lên )

                                                         \(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\left(\text{do a-b-c=0}\right)\)

                                                          \(=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)

Áp dụng ta được \(A=\left|\frac{1}{3}-\frac{1}{2}-1\right|+\left|\frac{1}{4}-\frac{1}{3}-1\right|+...+\left|\frac{1}{2000}-\frac{1}{1999}-1\right|\)là số hữu tỉ

Vậy A là số hữu tỉ

                                

Quỳnh Hương
Xem chi tiết
Nguyễn Nhật Minh
11 tháng 8 2016 lúc 22:25

\(\sqrt{1.1998}< \frac{1+1998}{2}\)

\(S>\frac{2}{1999}+\frac{2}{1999}+...+\frac{2}{1999}=2.\frac{1998}{1999}\)

Nguyễn Trọng Hoàng Nghĩa
Xem chi tiết
Hoàng Lê Bảo Ngọc
30 tháng 9 2016 lúc 12:11

Áp dụng \(\frac{1}{\sqrt{a.b}}>\frac{2}{a+b}\) , ta có : 

\(S=\frac{1}{\sqrt{1.1998}}+\frac{1}{\sqrt{2.1997}}+...+\frac{1}{\sqrt{k\left(1998-k+1\right)}}+...+\frac{1}{\sqrt{1998.1}}>\)

\(>\frac{2}{1+1998}+\frac{2}{2+1997}+...+\frac{2}{k+1998-k+1}+...+\frac{2}{1998+1}=\)

\(=\frac{2.1998}{1999}\)

Vậy \(S>\frac{2.1998}{1999}\)