Cho a, b, c > 0 thỏa mãn a+b+c=ab+bc+ca. Chứng minh rằng:
\(A=\frac{1}{a^2+b+1}+\frac{1}{b^2+c+1}+\frac{1}{c^2+a+1}\le1\)
Cho các số a,b,c thỏa mãn \(0\le a,b,c\le1\) Chứng minh rằng:
\(\frac{a}{bc+2}+\frac{b}{ca+2}+\frac{c}{ab+2}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)
---- Võ Quốc Bá Cẩn -----
Hóng 1 câu "EZ"
Đợi t qua thi nhé full.
Cho \(a,b,c\)là các số thực dương thỏa mãn \(a+b+c\le1\).Chứng minh rằng \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{87}{2}\)
TL :
Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b.\).
HT
Thưa anh, nếu \(a=b=10^{-4}\) và \(c=0,5-a-b=0,5-2.10^{-4}\),em bấm máy thì ngay cả khi chỉ có một cái
\(\frac{1}{ab\left(a+b\right)}\)nó đã bằng \(5.10^{11}\)lớn hơn rất nhiều so với \(\frac{87}{2}\), BĐT vẫn đúng chứ ạ?
Anh xem sai chỗ nào ạ?
Áp dụng BĐT Cô-si, ta có
\(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(1)
và \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(a+b+c\right)^3}{27}\le\frac{8}{27}\)(vì \(a+b+c\le1\)) (2)
và \(a^2b^2c^2\le\frac{\left(ab+bc+ca\right)^3}{27}\)(3)
Kết hợp (2) và (3) ta có \(a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(ab+bc+ca\right)^3}{27^2}\)(4)
Kết hợp (1) và (4) ta có \(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{\frac{8\left(ab+bc+ca\right)^3}{27^2}}}=\sqrt[3]{\frac{27.27^2}{8\left(ab+bc+ca\right)^3}}\)
\(=\frac{27}{2\left(ab+bc+ca\right)}\)
Từ đó \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}\)
Áp dụng BĐT Bu-nhi-a-cốp-xki, ta có:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)(vì \(a+b+c\le1\))
Lại có \(\frac{1}{ab+bc+ca}\ge\frac{3}{\left(a+b+c\right)^2}\ge3\)(cũng vì \(a+b+c\le1\))
Do đó ta được
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{2}{ab+bc+ca}+\frac{23}{2\left(ab+bc+ca\right)}\)
\(\ge9+\frac{23.3}{2}=\frac{87}{2}\)
Vậy BĐT được chứng minh.
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
1 . cho a, b, c là 3 số thực dương thỏa mãn a+b+c=1
Tìm GTLN \(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
2 . Cho các số thực a , b , c > 0 thỏa mãn a+b+c=3
Chứng minh rằng : \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)
\(=ac+bc+c^2+ab\)
\(=a\left(b+c\right)+c\left(b+c\right)\)
\(=\left(b+c\right)\left(a+b\right)\)
CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)
\(b+ca=\left(b+c\right)\left(a+b\right)\)
Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)
CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}.3\)
\(\Rightarrow P\le\frac{3}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=c\)
Vậy /...
\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)
\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)
Tương tự rồi cộng lại:
\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)
Dấu "=" xảy ra tại \(a=b=c=1\)
Bài 1 :
\(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
\(P=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\frac{bc}{a\left(a+b+c\right)+bc}}\)
\(+\sqrt{\frac{ca}{b\left(a+b+c\right)+ca}}\)
\(P=\sqrt{\frac{ab}{ac+bc+c^2+ab}}+\sqrt{\frac{bc}{a^2+ab+ac+bc}}\)
\(+\sqrt{\frac{ca}{ab+b^2+bc+ca}}\)
\(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)
Áp dụng bất đẳng thức Cauchy cho 2 bô só thực không âm
\(\Rightarrow\hept{\begin{cases}\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\\\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\le\frac{\frac{a}{a+b}+\frac{c}{b+c}}{2}\end{cases}}\)
\(\Rightarrow VT\)
\(\le\frac{\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{b}{a+b}+\frac{a}{a+b}\right)}{2}\)
\(\Rightarrow VT\le\frac{\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}}{2}=\frac{3}{2}\)
\(\Rightarrow P\le\frac{3}{2}\)
Vậy \(P_{max}=\frac{3}{2}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2+abc=4\).Chứng minh rằng: \(\frac{1}{2}< \frac{a}{4-bc}+\frac{b}{4-ca}+\frac{c}{4-ab}\le1\)
Cho a,b,c ≥ 0 nhưng không đồng thời bằng 0 thỏa mãn ab + bc + ca = 1. Chứng minh rằng :
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
Không mất tính tổng quát giả sử \(c=max\left\{a,b,c\right\}\)
\(\Rightarrow2c\ge a+b\)
\(\Rightarrow c\ge\frac{a+b}{2}\)
Từ giả thiết \(\Rightarrow a,b\le1\)
\(\Rightarrow ab\le1\)( *)
Đặt \(P=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}-\frac{5}{2}\)
\(=\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}\)
Đặt \(S=\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}-\frac{5}{2}\)
Xét hiệu \(P-S=\)\(\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}-\)\(-\frac{1}{a+b+\frac{1}{a+b}}-a-b-\frac{1}{a+b}+\frac{5}{2}\)
\(=\frac{1}{\frac{ab+b^2+1-ab}{a+b}}+\frac{1}{\frac{a^2+ab+1-ab}{a+b}}-\frac{1}{\frac{\left(a+\right)^2+1}{a+b}}-\left(a+b\right)\)
\(=\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)
Ta sẽ chứng minh \(\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\ge0\)
\(\Leftrightarrow\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}\ge\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)
\(\Leftrightarrow\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge1+\frac{1}{1+\left(a+b\right)^2}\)
\(\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2+\left(a+b\right)^2}{1+\left(a+b\right)^2}\)
\(\Rightarrow\left(2+b^2+a^2\right)\left[1+\left(a+b\right)^2\right]\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2+b^2+a^2b^2\right)\)
\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2-2a^2b^2-\left(a+b\right)^2\left(a^2+b^2\right)-\left(a+b\right)^2a^2b^2\)\(-2-2\left(a^2+b^2\right)-\left(a+b^2\right)\ge0\)
\(\Leftrightarrow-2a^2b^2-\left(a+b\right)^2a^2b^2+a^2+b^2-\left(a+b\right)^2\ge0\)
\(\Leftrightarrow ab\left[ab\left(a+b\right)^2+2ab-2\right]\le0\)
\(\Leftrightarrow ab\left(a+b\right)^2+2ab-2\le0\)( do a,b \(\ge0\))
\(\Leftrightarrow ab\left(a+b\right)^2\le2\left(1-ab\right)\)
\(\Leftrightarrow ab\left(a+b\right)^2\le2c\left(a+b\right)\) (1)
Mà \(c\ge\frac{a+b}{2}\)
\(\Rightarrow2c\left(a+b\right)\ge\left(a+b\right)^2\)
Ta có: \(\left(a+b\right)^2\ge ab\left(a+b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2\left(1-ab\right)\ge0\)( đúng do (*) )
\(\Rightarrow\left(1\right)\)đúng
\(\Rightarrow P-S\ge0\)
\(\Rightarrow P\ge S\)
Ta phải chứng minh \(S\ge0\)
\(\Leftrightarrow\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}\ge\frac{5}{2}\)
\(\Leftrightarrow\frac{a+b}{1+\left(a+b\right)^2}+\frac{1+\left(a+b\right)^2}{a+b}\ge\frac{5}{2}\) (2)
Đặt \(x=\frac{1+\left(a+b\right)^2}{a+b}\)
Ta có: \(1+\left(a+b\right)^2\ge2\left(a+b\right)\)
\(\Leftrightarrow\left(a+b-1\right)^2\ge0\)( đúng )
\(\Rightarrow x=\frac{1+\left(a+b\right)^2}{a+b}\ge2\)
=> (2) có dạng \(x+\frac{1}{x}\ge\frac{5}{2}\)
\(\Leftrightarrow2x^2-5x+2\ge0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\ge0\)( đúng )
\(\Rightarrow S\ge0\)mà \(P\ge S\)
\(\Rightarrow P\ge0\)
\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=1\\ab+bc+ca=1\\ab\left[ab\left(a+b\right)^2+2ab-2\right]=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=c=1;b=0\\b=c=1;a=0\end{cases}}\)
sửa một chút là cái dòng thứ 4 là từ giả thiết\(\Rightarrow0\le a,b\le1\)
Cho a,b,c>0 thỏa mãn \(ab+bc+ac\le1\).Chứng minh \(a+b+c+\sqrt{3}\ge8abc\left(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\right)\)
Do \(ab+bc+ca\le1\) nên:
\(\frac{1}{a^2+1}\le\frac{1}{a^2+ab+bc+ca}=\frac{1}{\left(a+b\right)\left(a+c\right)}.\)
Chứng minh tương tự :\(\frac{1}{b^2+1}\le\frac{1}{\left(a+b\right)\left(b+c\right)};\frac{1}{c^2+1}\le\frac{1}{\left(a+c\right)\left(b+c\right)}.\)
Suy ra \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\)
\(\Leftrightarrow\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)(1)
Mặt khác áp dụng bất đẳng thức AM-GM ta có:
\(a^2b+ab^2+a^2c+ac^2+c^2b+cb^2\ge6\sqrt[6]{\left(abc\right)^6}=6abc\)
\(\Leftrightarrow9\left(a^2b+ab^2+a^2c+ac^2+c^2b+cb^2\right)+18abc\ge8\left(a^2b+ab^2+a^2c+ac^2+c^2b+cb^2\right)+24abc\)\(\Leftrightarrow9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right).\)(2)
Từ (1) và (2) suy ra:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{2\left(a+b+c\right)}{\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=\frac{9}{4\left(ab+bc+ca\right)}\)(3)
Thật vậy ta có; \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{ab.bc.ca}=9abc\)(BĐT AM-GM)
Lại có:\(\sqrt{3}\left(ab+bc+ca\right)\ge\sqrt{3}\sqrt{ab+bc+ca}.\left(ab+bc+ca\right)\)(Do :
\(ab+bc+ca\le1\Rightarrow1\ge\sqrt{ab+bc+ca}.\))
\(\ge3.\sqrt{3\sqrt[3]{a^2b^2c^2}}.3.\sqrt[3]{a^2b^2c^2}=9abc\)(BĐT AM-GM)
Vậy \(\left(a+b+c\right)\left(ab+bc+ca\right)+\sqrt{3}\left(ab+bc+ca\right)\ge9abc+9abc\)
\(\Rightarrow\left(a+b+c+\sqrt{3}\right)\left(ab+bc+ca\right)\ge18abc\)
\(\Rightarrow a+b+c+\sqrt{3}\ge\frac{18}{ab+bc+ca}\)(4)
Từ (3) và (4) ta có:
\(a+b+c+\sqrt{3}\ge8abc.\left(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\right)\)
Chứng minh BĐT quen thuộc \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\) Kết hợp với giả thiết ta có: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{a^2+ab+bc+ca}+\frac{1}{b^2+ab+bc+ca}+\frac{1}{c^2+ab+bc+ca}\)
\(=\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(b+a\right)\left(b+c\right)}+\frac{1}{\left(c+a\right)\left(c+b\right)}=\frac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\le\frac{2\left(a+b+c\right)}{\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=\frac{9}{4\left(ab+bc+ca\right)}\) Như vậy cần chứng minh
\(a+b+c+\sqrt{3}\ge8abc\cdot\frac{9}{4\left(ab+bc+ca\right)}=\frac{18\left(a+b+c\right)}{ab+bc+ca}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)+\sqrt{3}\left(ab+bc+ca\right)\ge18abc\)
Ta đã có \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\) nên cần chứng minh được
\(\sqrt{3}\left(ab+bc+ca\right)\ge9abc\Leftrightarrow ab+bc+ca\ge3\sqrt{3}abc\)
Theo BĐT AM-GM ta đi chứng minh một kết quả chặt hơn là:
\(3\sqrt[2]{a^2b^2c^2}\ge3\sqrt{3}abc\Leftrightarrow abc\le\frac{1}{3\sqrt{3}}\)
Và đây là điều luôn đúng vì \(abc=\sqrt{ab\cdot bc\cdot ca}\le\sqrt{\left(\frac{ab+bc+ca}{3}\right)^3}\le\sqrt{\frac{1}{27}}=\frac{1}{3\sqrt{3}}\)
Ta được đpcm. Dấu \("="\Leftrightarrow a=b=c=\frac{\sqrt{3}}{3}\)
cho 3 số a,b,c thỏa mãn a^2+b^2+c^2=1. chứng minh \(\frac{-1}{2}\le ab+bc+ca\le1\)
\(-1=-\left(a^2+b^2+c^2\right)=>-1\le2\left(ab+bc+ca\right).\\
< =>\left(a+b+c\right)^2\ge0.\)
Luôn đúng .
\(a^2+b^2+c^2=1\ge ab+bc+ca\)
Cho 3 số a,b,c >0 thỏa mãn ab+bc+ca=1
Chứng minh rằng:\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
https://olm.vn/hoi-dap/detail/239526218296.html
Sử dụng phân tích tuyệt vời của Ji Chen:
\(VT-VP=\frac{4\left(a+b+c-2\right)^2+abc+3\Sigma a\left(b+c-1\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
Hãy xem phương pháp Buffalo-Way giải quyết nó!
Viết BĐT lại thành: \(\left(ab+bc+ca\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2\ge\frac{25}{4}\)
Giả sử \(a\ge b\ge c\) và đặt \(a=c+u+v,b=c+v\left(u,v\ge0\right)\). Sau khi quy đồng, bất đẳng thức trở thành:
128 c^6+4 u^5 v+19 u^4 v^2+30 u^3 v^3+15 u^2 v^4+c^5 (256 u+512 v)+c^4 (192 u^2+832 u v+832 v^2)+c^3 (96 u^3+528 u^2 v+1008 u v^2+672 v^3)+c^2 (40 u^4+224 u^3 v+488 u^2 v^2+528 u v^3+264 v^4)+c (8 u^5+60 u^4 v+152 u^3 v^2+168 u^2 v^3+100 u v^4+40 v^5) \(\ge0\) (hiển nhiên đúng)
P/s: Khúc cuối dài quá gõ công thức bị tràn hết màn hình nên đành gõ ngoài, thông cảm! Nhớ bài này có một cách dùng dồn biến mà nghĩ không ra.
cho a,b,c>0 , chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(1\right)\) Áp dụng chứng minh các BĐT sau:
a,\(\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
b,cho \(x,y,z>0\) thỏa mãn x+y+z=1.Tìm GTLN của biểu thức\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
c,cho a,b,c>0 thỏa mãn\(a+b+c\le1\) Tìm GTNN của biểu thức\(P=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
d,cho a,b,c >0 thỏa mãn a+b+c=1.Chứng minh\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge30\)
Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3
c) Áp dụng bđt Cauchy Schwarz dạng Engel ta được:
\(P=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2ab+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\)
<=>\(P\ge\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1^2}=9\)
Vậy Pmin=9 <=> a=b=c=1/3