Cho a,b,c > 0. CMR: a+b+c=1
CM: \(\frac{3}{ab+bc+ac}+\frac{2}{a^2+b^2+c^2}>14\)
cho a,b,c> 0 thỏa mãn a+b+c=1 cmr:
\(\frac{3}{ab+bc+ac}+\frac{2}{a^2+b^2+c^2}>14\)
a2+b2+c2=1-2ab-2ac-2bc
dat ab+bc+ca =x roi thay vao
Từ giả thiết ta có:
\(\left(a+b+c\right)^3=a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)
\(\frac{3}{ab+bc+ac}=\frac{3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)}{ab+bc+c}=\frac{3\left(a^2+b^2+c^2\right)}{ab+bc+ca}+6\)
\(\frac{2}{a^2+b^2+c^2}=\frac{2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{a^2+b^2+c^2}=2+\frac{4\left(ab+bc+ca\right)}{a^2+b^2+c^2}\)
Áp dụng bđt Cosi cho 2 số dương ta có:
\(\frac{3}{ab+bc+ca}+\frac{2}{a^2+b^2+c^2}\ge6+2+2\sqrt{\frac{3\left(a^2+b^2+c^2\right)4\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}}=8+2\sqrt{12}\)
\(>8+2\sqrt{9}=14\)
Bảo Ngọc Đàm dòng 1 viết nhầm rồi chị ơi
sửa lại : \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2+2\left(ab+bc+ac\right)=1^2=1\)
Cho a,b,c >0 TM ab+bc+ac=3abc CMR
\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{3}{2}\)
Câu hỏi của TRẦN HỮU ĐẠT - Toán lớp 9 - Học toán với OnlineMath
Cho a,b,c>0 CMR
\( \frac{a^3}{bc}+ \frac{b^3}{ac}+ \frac{c^3}{ab}\ge \frac{3(a^2+b^2+c^2)}{a+b+c} \)
Cho a, b, c>0 . CMR:
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\ge\frac{a+b+c}{3}\)
Đầu tiên ta nhắc lại một kết quả sau: Với mọi số dương \(x,y\) thì \(\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}.\) Thực vậy bất đẳng thức tương đương với \(3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\Leftrightarrow2\left(x^2+y^2\right)-4xy\ge0\Leftrightarrow2\left(x-y\right)^2\ge0.\) (Đúng).
Đặt vế trái của bất đẳng thức là \(S\) và đặt \(T=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}.\) Áp dụng hằng đẳng thức \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right),\) ta được
\(S-T=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ca+a^2}=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\).
Suy ra \(S=T.\) Ta có
\(2S=S+T=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
\(=\left(a+b\right)\frac{a^2-ab+b^2}{a^2+ab+b^2}+\left(b+c\right)\frac{b^2-bc+c^2}{b^2+bc+c^2}+\left(c+a\right)\frac{c^2-ca+a^2}{c^2+ca+a^2}\)
\(\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}.\)
Do đó \(2S\ge\frac{2\left(a+b+c\right)}{3}\to S\ge\frac{a+b+c}{3}.\)
Cho mk hỏi tại sao lại phải đặt thêm biểu thức T vậy ???
Mk vẫn ko hiểu cho lắm !!!
Cho a,b,c >0
CMR:\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{a^2+ac+c^2}\ge\frac{a+b+c}{3}\)
Một số đánh giá: \(a^2+ab+b^2=\frac{3}{4}\left(a+b\right)^2+\frac{1}{4}\left(a-b\right)^2\ge\frac{3}{4}\left(a+b\right)^2\)
\(ab=\frac{\left(a+b\right)^2}{4}-\frac{\left(a-b\right)^2}{4}\le\frac{\left(a+b\right)^2}{4}\)
\(\frac{a^3}{a^2+ab+b^2}=\frac{a\left(a^2+ab+b^2\right)-a\left(ab+b^2\right)}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\)
\(\ge a-\frac{\frac{\left(a+b\right)^2}{4}.\left(a+b\right)}{\frac{3}{4}\left(a+b\right)^2}=a-\frac{a+b}{3}=\frac{2a-b}{2}\)
Tương tự và suy ra đpcm.
Câu 1 : Cho a,b,c>0 thỏa mã ab+bc+ac=3. CMR : \(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}\ge abc\)
Câu 2 : Cho a,b,c>0. CMR: \(\frac{2}{a}+\frac{6}{b}+\frac{9}{c}\ge\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\)
Xin lỗi lúc này do thày nhìn nhầm nên nghĩ câu 2 sai đề. Để đền bù thiệt hại, xin giải lại cả hai bài cho em
Cả hai bài toán này đều sử dụng bất đẳng thức Cauchy-Schwartz. Em xem link dưới đây để biết rõ hơn: http://olm.vn/hoi-dap/question/174274.html
Câu 1. Theo bất đẳng thức Cauchy-Schwartz ta có
\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}=\frac{1}{2a+\frac{bc}{a}}+\frac{1}{2b+\frac{ca}{b}}+\frac{1}{2c+\frac{ab}{c}}\)
\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)}=\frac{9}{2\left(a+b+c\right)+\frac{a^2b^2+b^2c^2+c^2a^2}{abc}}=\frac{9abc}{2abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}\)
\(=\frac{9abc}{\left(ab+bc+ca\right)^2}=\frac{9abc}{9}=abc.\)
Vậy ta có điều phải chứng minh.
Câu 2. Tiếp tục sử dụng bất đẳng thức Cauchy-Schwartz
\(\frac{8}{2a+b}=\frac{4}{a+\frac{b}{2}}\le\frac{1}{a}+\frac{1}{\frac{b}{2}}=\frac{1}{a}+\frac{2}{b}.\)
Tương tự, \(\frac{48}{3b+2c}=\frac{16}{b+\frac{2c}{3}}\le4\left(\frac{1}{b}+\frac{1}{\frac{2c}{3}}\right)=\frac{4}{b}+\frac{6}{c},\) và \(\frac{12}{c+3a}=\frac{4}{\frac{c}{3}+a}\le\frac{1}{\frac{c}{3}}+\frac{1}{a}=\frac{3}{c}+\frac{1}{a}.\)
Cộng ba bất đẳng thức lại ta được
\(\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\le\left(\frac{1}{a}+\frac{2}{b}\right)+\left(\frac{4}{b}+\frac{6}{c}\right)+\left(\frac{3}{c}+\frac{1}{a}\right)=\frac{2}{a}+\frac{6}{b}+\frac{9}{c}.\) (ĐPCM).
CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ac} + \frac{1}{3} \geq \frac{8}{9}(\frac{a}{b+c} + \frac{b}{a+c} +\frac{c}{a+b})\)
CMR:\((1+a+b+c)(1+ab+bc+ac) \geq 4\sqrt{2(a+bc)(b+ac)(c+ab)}\)
Cho a,b,c>0. Cmr:
\(\frac{a}{\sqrt{ab+b^2}}+\frac{b}{\sqrt{bc+b^2}}+\frac{c}{\sqrt{ac+c^2}}\ge\frac{3\sqrt{2}}{2}\)
Cho các số thựa dương a,b,c thỏa mãn a2+b2+c2=14.CMR:
\(\frac{a+b}{4+bc}+\frac{b+c}{4+ac}+\frac{c+a}{4+ab}\ge\frac{3}{2}\)