cho biểu thức \(A=(b^2+c^2-a^2)^2-4b^2c^2\)
Phân tích đa thức A thành nhân tử
Chứng minh nếu a,b,c là độ dài các cạnh của 1 tam giác thì A<0
bài 1 cho đa thức
M = (a2+b2+c2)2-4a2b2
a, phân tích thành nhân tử
b, CM nếu a,b,c là 3 độ dài các cạnh của 1 tam giác thì M<0
cac ban oi giup minh nha minh dang gap lam.
Chứng minh rằng: nếu các cạnh của tam giác được liên hệ với nhau bở bất đẳng thức a^2+b^2>5c^2
thì c là độ dài cạnh nhỏ nhất của tam giác
1 . Cho tam giác ABC nội tiếp đường tròn tâm O có độ dài cạnh BC=a, AC=b, AB=c. E là điểm nằm trên cung BC không chứa điểm A sao cho cung EB bằng cung EC. AE cắt cạnh BC tại D
a) CMR: AD2=AB.AC-DC.DB
b) Tính độ dài AD theo a,b,c
2 .
Phân tích đa thức sau thành nhân tử:
a2(b-2c)+b2(c-a)+2c2(a-b)+abc
Các phát biểu sau sai hay đúng
a)Nếu tam giác MNP là tam giác đều thì độ dài của 3 cạnh MN,NP,PM luôn bằng 2cm
b)Tam giác đều ABC có 3 cạnh bằng nhau và 3 góc ở các đỉnh A,B,C bằng nhau
c)Nếu tam giác IKH có IK = IH và hai góc ở các đỉnh K,H bằng nhau thì tam giác IKH là tam giác đều
Phát biểu a) là phát biểu sai. Vì một tam giác đều khi có ba cạnh bằng nhau không nhất thiết phải bằng 2cm, có thể bằng 3cm, 4cm, …
Phát biểu b) là đúng. Vì tam giác đều là tam giác có ba cạnh bằng nhau và ba góc bằng nhau.
Phát biểu c) là sai. Vì tam giác IKH chỉ có hai cạnh và hai góc bằng nhau nên chưa đủ điều kiện để tam giác IKH là tam giác đều.
Phân tích đa thức thành nhân tử
(x^2-2x+3)(x^2-2x+5)-8
x^2-2x-5+2 nhân căn 5
Cho a+b+c=1.Tìm giá trị của biểu thức
B=a-b trên b+1+2c + 3b+4c trên c-a+2 -c trên 3-2a-b
cho biểu thức A=\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a) Rút gọn biểu thức
b) Chững minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Chứng minh rằng a, b, c và a' ,b' ,c' là độ dài 3 cạnh của 2 tam giác đồng dạng và các độ dài trêng đã tương ứng thì \(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{(a+b+c)(a'+b'+c')}\) .
Ta có \(a,b,c\)và \(a',b',c'\)là độ dài các cạnh tương ứng của 2 tam giác đồng dạng
Đương nhiên \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\left(k>0\right)\). Khi đó:
\(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{k}\left(a'+b'+c'\right)\)(1)
\(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k\left(a'+b'+c'\right)^2}=\sqrt{k}\left(a'+b'+c'\right)\)(2)
Từ (1) và (2) suy ra ĐPCM.
Cho biểu thức A=\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a, rút gọn biểu thức
b, chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm đc của câu a, là 1 phân số tối giản
Tớ thiếu chỗ : Gọi ƯCLN ( a2+a-1; a2+a+1 ) là d
a ) Ta có \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
Điều kiện đúng A ≠ - 1
b ) Gọi ƯCLN ( a2+a-1; a2+a+1 )
Vì a2 + a + 1 = a ( a + 1 ) - 1 là số lẻ nên d là số lẻ
Mặt khác , 2 = [ ( a2+a+1 ) - ( a2+a-1 ) ] ⋮ d
Nên d = 1 tức là a2+a+1 và a2+a-1 là nguyên tố cùng nhau
⇒ Biểu thức A là phân số tối giản
3. cho tam giác ABC trong đó AB<AC. Gọi H là chân dường cao kẻ từ đỉnh A. M;N;P lần lượt là trung điểm của các cạnh AB;AC;BC. Chứng minh tứ giác NMPH là hình thang cân .