Giả sử phương trình bậc hai \(x^2+ax+b+1=0\) có hai nghiệm dương. CMR \(a^2+b^2\)là hợp số
giả sử phương trình bậc 2 : x^2 + ax + b + 1 = 0 có hai nghiệm nguyên dương. chứng minh rằng : a^2 + b^2 là 1 hợp số
gọi x1,x2 là hai nghiệm \(\Rightarrow x_1+x_2=-a\) và \(x_1x_2=b+1\)
Ta có : \(a^2+b^2=\left[-\left(x_1+x_2\right)\right]^2+\left(x_1x_2-1\right)^2\)
\(\Rightarrow a^2+b^2=\left(x_1^2+x_2^2+2x_1x_2\right)+\left(x_1^2x_2^2-2x_1x_2+1\right)\)
\(\Rightarrow a^2+b^2=x_1^2+x_2^2+x_1^2x_2^2+1=\left(x_1^2+1\right)\left(x_2^2+1\right)\)là hợp số
giả sử phương trình bậc hai x2+ax+b = 0 có hai nghiệm nguyên dương . chứng minh rằng a2+ b2 là một hợp số
Giả sử phương trình bậc hai \(x^2+ax+b+1=0\)có hai nghiệm nguyên dương . Chưng minh rằng \(a^2+b^2\)là hợp số
Các bạn giải chi tiết giùm mk nhé
Giả sử phương trình x^2 +ax+b+1=0 có 2 nghiệm nguyên dương. Chứng minh rằng a^2+ b^2 là hợp số
Câu 1 :Giả sử phương trình bậc hai \(ax^2+bx+c=0\) có hai nghiệm thuộc [0;3]. Tìm GTLN và GTNN của biểu thức:
Q=\(\frac{18a^2-9ab+b^2}{9a^2-3ab+ac}\)
Câu 2 Giả sử phương trình bậc hai \(ax^2+bx+c=0\) có hai nghiệm > 1 Chứng minh rằng
\(\frac{^{x^2-a-2b}}{b-a+1}\text{≥}\frac{2\sqrt{b}}{1+\sqrt{b}}\)
GIÚP MÌNH VỚI
Câu 2: Theo định lý Vi-et ta có \(\hept{\begin{cases}x_1+x_2=-a\\x_1x_2=b\end{cases}}\)Bất Đẳng Thức cần chứng minh có dạng
\(\frac{x_1}{1+x_1}+\frac{x_2}{1+x_2}\ge\frac{2\sqrt{x_1x_2}}{1+\sqrt{x_1x_2}}\)Hay \(\frac{x_1}{1+x_2}+1+\frac{x_2}{1+x_1}+1\ge\frac{2\sqrt{x_1x_2}}{1+\sqrt{x_1x_2}}+2\)
\(\left(x_1+x_2+1\right)\left(\frac{1}{1+x_1}+\frac{1}{1+x_2}\right)\ge\frac{2\left(1+2\sqrt{x_1x_2}\right)}{1+\sqrt{x_1x_2}}\)Theo Bất Đẳng Thức Cosi ta có
\(x_1+x_2+1\ge2\sqrt{x_1x_2}+1\)Để chứng minh (*) ta quy về chứng minh
\(\frac{1}{1+x_1}+\frac{1}{1+x_2}\ge\frac{2}{1+\sqrt{x_1x_2}}\)với \(x_1;x_2>1\). Quy đồng rồi rút gọn Bất Đẳng Thức trên tương đương với
\(\left(\sqrt{x_1x_2}-1\right)\left(\sqrt{x_1}-\sqrt{x_2}\right)^2\ge0\)(Điều này hiển nhiên đúng)
Dấu "=" xảy ra khi và chỉ khi \(x_1=x_2\Leftrightarrow a^2=4b\)
Bạn ơi thế a^2 - 4b ở vế trái bạn vứt đi đâu r ????
Giả sử phương trình Ax2+Bx+C=0 có hai nghiệm x1, x2 thì x + x=-B/A, x*x=C/A. Cho a khác 0 và giả sử phương trình x2 - ax - 1/2a2. Chứng minh rằng x14+x24 >=2+√2
đoạn sau là x2-ax-1/(2a2)=0 nha, viết thiếu.
@nguyenthanhtuan cái này là chứng minh mà bạn.
Cho phương trình: ax2 + bx + c = 0 (a,b,c khác 0) có hai nghiệm dương x1, x2. Chứng minh rằng phương trình bậc hai cx2 + bx + a = 0 cũng có hai nghiệm dương x3, x4. Suy ra x1 + x2 + x3 + x4 \(\ge\) 4
\(ax^2+bx+c=0\)
Do phương trình có 2 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{-b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{b}{a}< 0\\\dfrac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\b,a\left(trái.dấu\right)\\c,a\left(cùng.dấu\right)\end{matrix}\right.\)
\(\Rightarrow b,c\) trái đấu
Xét \(cx^2+bx+a=0\)
Giả sử phương trình có 2 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{-b}{c}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{b}{c}< 0\end{matrix}\right.\) ( 1 )
Do b , c trái dấu nên ( 1 ) luôn đúng vậy pt \(cx^2+bx+a=0\) luôn có 2 nghiệm dương phân biệt
\(\Rightarrow\) đpcm
Xét pt \(ax^2+bx+c=0\) \(\forall\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}>0\\P=x_1x_2=\dfrac{c}{a}>0\end{matrix}\right.\)( 1 )
Xét pt \(cx^2+bx+a=0\) \(\forall\left\{{}\begin{matrix}x_3>0\\x_4>0\end{matrix}\right.\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}S=x_3+x_4=\dfrac{-b}{c}>0\\P=x_3x_4=\dfrac{a}{c}>0\end{matrix}\right.\)( 2 )
Từ ( 1 ) và ( 2 )
Áp dụng bất đẳng thức Cauchy - Schwarz cho 4 bộ số thực không âm
\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}\)
\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{\dfrac{c}{a}.\dfrac{a}{c}}=4\) ( đpcm )
cho pt bậc 2 : ax^2+bx+c=0 có 2 nghiệm phân biệt thỏa mãn
X1+x2-2.X1x2=0
mx1x2-(x1+x2)=2m+1
a) tìm pt bậc hai trên với m là tham số
b)xác định m để phương trình bậc 2 trên có 2 nghiệm dương phân biệt
viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn
Cho phương trình x2+ ax + b=0 có hai nghiệm nguyên dương biết a,b là hai số thõa mãn 5a + b=22.Tìm hai nghiệm đó