Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thế Lê Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2017 lúc 6:11

Dũng Phạm Tiến
Xem chi tiết
GOD_Shine
Xem chi tiết
li syaoran
Xem chi tiết
Yen Nhi
20 tháng 5 2021 lúc 10:09

\(\frac{a}{b}< \frac{c}{d}\rightarrow ad< bc\)

\(\rightarrow ad+ab< bc+ab\)

\(\rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)     \(\left(1\right)\)

\(\text{Ta có:}\)

\(ad< bc\)

\(\rightarrow ad+cd< bc+cd\)

\(\rightarrow d.\left(a+c\right)< c.(b+d)\)

\(\rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)     \(\left(2\right)\)

\(\text{Từ}\)\(\left(1\right)\)\(\text{và}\)\(\left(2\right)\)\(\rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Khách vãng lai đã xóa
nguyen vu anh
Xem chi tiết
Phạm Thành Đạt
Xem chi tiết
Lê Nguyên Hạo
18 tháng 8 2016 lúc 15:52

* a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d) 
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d

vunguyenminhtrang
Xem chi tiết
KWS
23 tháng 8 2018 lúc 21:48

Ta có : \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< ab+bc\)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Ta lại có : \(ad< bc\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2), suy ra nếu :\(\frac{a}{b}< \frac{c}{d}\)

thì : \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Đạt Phạm
Xem chi tiết