Cho a=111...12: b=111...4 (a và b có n chữ số 1). Chứng minh rằn ab+1 là số chính phương
Chứng minh các số sau là số chính phương :
a) A = 111...1888...89 (có n số 1 , n-1 số 8)
b) B=111...1222...25(có n số 1 , n+1 số 2 )
quan sát 11-2=9=32;1111-22=1089=332 hãy chứng minh rằng A =111...111(2n chữ số 1)-2222...222(n chữ số 2) là số chính phương
1) Cho A=1234567891011...99 là số nguyên tố hay hợp số
2) Tìm số nguyên tố p<200 biết p chia cho 60 có số dư là hợp số
3) Chứng tỏ các số: 111..11(n chữ số) - 10n và 111..112111...1 là hợp số
4) Cho p; p+20; p+40 là số nguyên tố. Chứng minh rằng p+80 là số nguyên tố.
5) Cho 3 số a;b;c khác o thỏa mãn:
ab=c; bc=4a; ca=96; Tìm a;b;c
Chứng minh số B=444...488...89 là số chính phương (n chữ số 4 và n-1 chữ số 8)
Ta có:
\(B=10^n.4\left(\frac{10^n-1}{9}\right)+8\left(\frac{10^n-1}{9}\right)+1=\frac{10^n.4.\left(10^n-1\right)+8\left(10^n-1\right)+9}{9}=\frac{4.10^{2n}-4.10^n+8.10^n-8+9}{9}=\frac{\left(2.10^n\right)^2+4.10^n+1}{9}\)
\(=\left(\frac{2.10^n+1}{3}\right)^2\)
Vậy B là số chính phương
Cho A là số có 4 chữ số và A là một số chính phương , nếu ta thêm vào mỗi chữ số của A một đơn vị thì ta được B và B cũng là 1 số chính phương . Tìm A và B
Nếu ta thêm vào mỗi chữ số của A 1 đơn vị thì số A sẽ tăng thêm 1111 đơn vị hay A + 1111 = B (1).
Đặt A = a2 và B = b2 với a,b thuộc N*.
Từ (1) => a2 + 1111 = b2 => b2 - a2 = 1111 => (a + b)(b - a) = 1111. (2)
Vì a, b thuộc N* nên a + b > b - a. (3) Ta có : 1111 = 11.101 (4)
Từ (2), (3) và (4) => a + b = 101 và b - a = 11. => a = 45 và b = 56.
=> A = 2025 và B = 3136.
Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a+b+c+8 là số chính phương .
bài này mình làm trong vở ,mình đã chụp ảnh lại lời giải,bạn chịu khó mở trang của mình ra xem nha
Bạn tham khảo bài toán số 21 nha : https://olm.vn/hoi-dap/detail/11112433588.html
~ Học tốt ~
#)Giải :
Ta có :
\(a=111...11\)(2n chữ số 1)
\(b=111..11\)(n + 1 chữ số 1)
\(c=666...66\)(n chữ số 6)
\(\Rightarrow a+b+c+8=111...11+111...11+666...66+8\)
\(=\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+\frac{6\left(10^n-1\right)}{9}+\frac{72}{9}\)
\(=\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)
\(=\frac{\left(10^n\right)^2+10.10^n+6.10^n-6+70}{9}\)
\(=\frac{\left(10^n\right)^2+16.10^n+64}{9}=\left(\frac{10^n+8}{3}\right)^2\)
\(\Rightarrow a+b+c+8\)là số chính phương (đpcm)
a) chứng minh rằng số có dạng n6 - n4 + 2n3 + 2n2 trong đó n > 1 và là số tự nhiên không phải là số chính phương.
b) giả sử N = 1.3.5.7...2009.2011
Chứng minh rằng trong 3 số nguyên liên tiếp 2N - 1, 2N, 2N + 1 không số nào là số chính phương.
Chứng minh rằng số sau là hợp số
A= 11111.......1121111..........111
biết có 2n chữ số 1
Chứng minh rằng 111.......1 - 222.......2 là một số chính phương (111.......1 có 2n chữ số 1, 222.....2 có n chữ số 2)