cho tam giác ABC cân tại A có BAC =1080.c/m: \(\frac{BC}{AC}\)là số vô tỉ
Cho tam giác ABC cân tại A có góc BAC = 108 độ .Chứng minh tỉ số \(\frac{BC}{AC}\)là số vô tỉ
Cho tam giác ABC cân tại A có góc BAC=108*. Tính tỉ số \(\frac{BC}{AC}\)
Tính được góc ABC = góc ACB = 36 độ
Kẻ CH vuông góc với AB
Có : sin HCB = HC/BC
=> HC/BC = sin 36 độ
=> BC = sin 36 độ . HC
Có : góc HAC = 180 độ - góc CAB = 180 độ - 108 độ = 72 độ
=> HC/AC = sin HAC = sin 72 độ
=> AC = sin 72 độ . HC
=> BC/AC = sin 36 độ . HC / sin 72 độ . HC = sin 36 độ / sin 72 độ xấp xỉ = 0,618
Tk mk nha
Cho tam giác abc cân tại A có góc A=108 độ. Chứng minh tỉ số bc/ac là số vô tỉ
cho tam giác ABC vuông tại A có AB=3cm, AC=6cm. a) Tính BC. b) Gọi E là trung điểm AC, phân giác góc A cắt BC tại D. Chứng minh tam giác ABD=tam giác AED. c) ED cắt AB tại M. Chứng minh tam giác BAC=tam giác EAM. Suy ra tam giác MAC vuông cân
a) áp dụng đ/lý py ta go
=> BC2=AB2+AC2
BC2 = 32 +62 = 9+36=45
=> BC=√45
b) C/m AE=3cm(AE là trung điểm AC; AE=AC:2)
tg ABD = tg AED VÌ AB=AE (vì =3cm),góc BAD=EAD, AD chung
c) VÌ tg ABD=AED => góc B=E
tg BAC=EAM vì AE=BC, Â vuông, góc B=E
=> AM=AC=> tg MAC vuông cân
1.Cho tam giác ABC cân tại B. trên AB,BC lần lượt lấy M,N sao cho AI=CK. có góc BCA=42 độ. số đo góc KIA là...độ
2.Cho tam giác ABC cân tại A có góc A=112 độ. Trên AB,AC lần lượt lấy M,N sao cho AM=AN. Số đo góc MNC là...độ
3.Cho tam giác ABC cân tại A có góc A=78 độ. Gọi E,F lần lượt là trung điểm AB,AC. Có góc BCE=26 độ. Số đo góc AFB là...độ
4.Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm AB,AC. Cho góc BAC=84 độ, gócABN=30 độ. Số đo góc BCM là...độ
Cho tam giác ABC cân tại A trên AB lấy D trên AC lấy Éao cho BD=CE
a)c/m DE//BC
b)c/m tam giác ABE=tam giác ACD
c)c/m tam giác BID = tam giác CIE (BE giao CD tại I )
d)c/m AI là tia phân giác BAC
e)c/m AI vuông BC
a) Ta có : BD=CE (đề bài)
mà AB=AD+BD; AC=AE+CE; AB=AC (Δ ABC cân tại A)
⇒ AD=AE
⇒ Δ ADE là Δ cân tại A
⇒ Góc ADE = Góc AED
\(\Rightarrow\widehat{DAE}+\widehat{2ADE}=180^O\)
mà \(\widehat{BAC}+\widehat{2ABC}=180^O\) (Δ ABC cân tại A)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\) ở vị trí đồng vị
Tương tự ta CM \(\widehat{AED}=\widehat{ACB}\) cũng ở vị trí đồng vị
\(\Rightarrow DE//BC\)
b) Xét Δ ABE và Δ ACD ta có :
AB=AC (Δ ABC cân tại A)
Góc A chung
AD=AE (cmt)
⇒ Δ ABE = Δ ACD (cạnh, góc, cạnh)
c) Ta có DE song song BC (cmt)
mà Góc DBC = Góc ECA (Δ ABC cân tại A)
⇒ BDEC là hình thang cân
Xét Δ BID và Δ CIE ta có :
\(\widehat{BDC}=\widehat{DCE}\) (đồng vị)
BD=CE (đề bàI)
BE=CD (BDEC là hình thang cân)
⇒ Δ BID = Δ CIE (cạnh, góc, cạnh)
d) Ta có: AD=AE (cmt)
mà DI=IE (Δ BID = Δ CIE)
⇒ AI là đường trung trực của DE
mà Δ ADE cân tại A (cmt)
⇒ AI là tia phân giác góc BAC
e) Ta có : Δ ABC cân tại A (đề bài)
mà AI là tia phân giác góc BAC (cmt)
⇒ AI là đường cao
⇒ AI vuông góc BC.
Cho tam giác abc cân tại A ,có góc BAC=108.tính tỷ số BC/AC?
Cho tam giác ABC cân tại A có góc BAC nhọn.Tia phân giác của góc BAC cắt BC tại D. Đường trung tuyến BE của tam giác BAC cắt cạnh AD tại G
a)c/m tam giác BAD=tam giác CAD
b)c/m G là trọng tâm tam giác ABC và GB=GC
c)c/m AD>CD