Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
paker alex
Xem chi tiết
Phan Thanh Tịnh
3 tháng 10 2016 lúc 12:35

A = 4x2y2 - (x2 + y2 - z2)2 = (2xy - x2 - y2 + z2)(2xy + x2 + y2 - z2) = [z2 - (x - y)2].[(x + y)2 - z2] = (z - x + y)(z + x - y)(x + y + z)(x + y - z)

Vì x,y,z > 0 ; x + y > z ; z + y > x và z + x > y (vì x,y,z là độ dài 3 cạnh của 1 tam giác) nên các nhân tử của A đều dương => A > 0

Bạn ko hiểu chỗ nào thì hỏi mình nhé! Mình sửa (x2 + y2 - z2) thành (x2 + y2 - z2)2

Hoàng Lê Bảo Ngọc
3 tháng 10 2016 lúc 17:59

Hóa ra đề bài ghi sai à? 

Phạm Thị Thùy Linh
27 tháng 2 2019 lúc 22:09

dung oi

Vy thị thanh thuy
Xem chi tiết
nhoc quay pha
24 tháng 11 2016 lúc 21:46

A= 4x2y2 - (x2 + y2 - z2 )2

= (2xy - x2 - y2 + z2)(2xy + x2 + y2 - z2)

=[ z2-(x-y)2].[ (x+y)2-z2 ]

=(z-x+y)(z+x-y)(x+y-z)(z+y+z)

x,y,z là độ dài 3 cạnh của 1 tam giác=>x>0,y>0,x>0

áp dụng bất đẳng thức của tam giác

ta có:

z-x+y>0

z+x-y>0

x+y-z>0

x+y+z>0

=> tích (z-x+y)(z+x-y)(x+y-z)(x+y+z) >0

=> A>0

Ko cần bít
Xem chi tiết
Nguyễn Anh Quan
15 tháng 1 2018 lúc 20:32

Có : x^2+y^2+z^2+4x-2y-4z+10

= (x^2+4x+4)+(y^2-2y+1)+(z^2-4x+4)+1

= (x+2)^2+(y-1)^2+(z-2)^2+1 >= 1

=> (x+2)^2+(y-1)^2+(z-2)^2 luôn dương với mọi x,y,z

Không Tên
15 tháng 1 2018 lúc 20:32

\(x^2+y^2+z^2+4x-2y-4z+10\)

\(=\left(x^2+4x+4\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)+1\)

\(=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1\)

Vì  \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\)\(\Leftrightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2\ge0\)

\(\Rightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1>0\) 

\(\Rightarrow\)\(đpcm\)

Khổng Trang
15 tháng 1 2018 lúc 20:41

đâylà toán lớp 6, 7 rồi bạn

๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Đặng Ngọc Quỳnh
18 tháng 10 2020 lúc 12:40

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

Khách vãng lai đã xóa
toi la toi toi la toi
Xem chi tiết
Băng Dii~
1 tháng 10 2017 lúc 19:58

Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2  + 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 =  (a2 + b2 - c2)2 - 4a2b2

= (a2 + b2 - c2 - 2ab).(a2 + b2  - c+ 2ab)  (1)

Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c> (|a - b|)2 = (a - b)2

=> c2 > a2 + b2 - 2ab => a2 + b - c2 - 2ab  < 0  (2)

lại có : a+ b > c => (a+ b) 2 > c=> a2 + b2  - c+ 2ab > 0  (3)

Từ (1)(2)(3) => A < 0 => đpcm

toi la toi toi la toi
1 tháng 10 2017 lúc 20:22

luôn luôn dương mà

Lê Việt
Xem chi tiết
Quỳnh Hương
Xem chi tiết
Emily
Xem chi tiết
Dương Đình	Huy
21 tháng 4 2020 lúc 9:15

a) Vì x,y,z>0 nên a,b,c>0 (1)

Ta có: a+b-c=x+y+y+z-z-x=2y>0

=> a+b>c. Tương tự ta có b+c>a, c+a>b  (2)

Từ (1) và (2) => Tồn tại tam giác mà các cạnh của nó có độ dài 3 cạnh là a,b,c

b) Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có a+b>c hay x+y+y+z>z+x   =>  y>0

Tương tự: z,x>0

Vậy có các số dương x,y,z tm

Khách vãng lai đã xóa
võ viết nhân
Xem chi tiết
Bảo Ngân
4 tháng 5 2020 lúc 13:06

 ttew ere

Khách vãng lai đã xóa