Cho tam giác ABC nhọn có 2 đường cao BD, CE. Gọi M ,N theo thứ tự là trung điểm của BC,DE. Chứng minh:
A) DM = 1/2 BC
B) Tam giác DME cân
C) MN vuông với DE
cho tam giác ABC nhọn,có 2 đường cao BD và CE .Gọi M,N lần lượt là trung điểm của BC vàDE
Chứng Minh rằng:a)DM=1/2 BC
b) TAM GIÁC DME CÂN
c)MN VUÔNG GÓC VỚI DE
Cho tam giác ABC nhọn có hai đường cao BD và CE. Gọi M, N là trung điểm của BD và CE. Chứng minh rằng:
1)DM = ½ BC
2)Tam giác DME cân
3)MN vuông vóc với DE
Help me
Nếu c/m được DM=1/2(BC) => BD=BC => vô lý vì trong tam giác vuông BCD có cạnh huyền BC = cạnh góc vuông BD à? => xem lại đề bài
Tham khảo đề bài và bài làm tại link:
Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath
Cho tam giác ABC nhọn có hai đường cao BD và CE. Gọi M, N là trung điểm của BD và CE. Chứng minh rằng:
1)DM = ½ BC
2)Tam giác DME cân
3)MN vuông vóc với DE
Help me. mik tick đủ cho////
Em sai đề. Tham khảo đề và bài làm tại link: Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath
Cho tam giác ABC nhọn có 2 đường cao BD và CE. Gọi M,N lần lượt là trung điểm của BC và DE
a) CM: DM=1/2 BC
b) Tam giác DME cân
Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath
Cho tam giác ABC nhọn, 2 đường cao BD và CE.Gọi M;N lần lượt là trung điểm của BC và DE
1)Chứng minh \(DE=\frac{1}{2}BC\)
2)Chứng minh tam giác DME cân
3)Chứng minh MN vuông góc DE
Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath
Bài 1:Cho tam giác ABC vuông tại A có AM là đường trung tuyến.Gọi N là trung điểm của AC
1)Chứng minh \(MN\perp AC\)
2)Tam giác AMC là tam giác gì?Vì sao?
3)Chứng minh 2AM=BC
Bài 2:Cho tam giác ABC nhọn có 2 đường cao BD và CE.Gọi M,N là trung điểm của BC và DE
1)Chứng minh \(DM=\dfrac{1}{2}BC\)
2)Chứng minh tam giác DME cân
3)Chứng minh MN \(\perp\) DE
Bài 3:Cho tam giác ABC trên AC lấy theo thứ tự điểm D và E sao cho AD=DE=EC.Gọi M là trung điểm của BC,BD cắt AM tại I
1)Chứng minh ME//BD
2)Chứng minh I là trung điểm của AM
3)Chứng minh ID=\(\dfrac{1}{4}\) BD
Bài 4:Cho tam giác ABC có AM là trung tuyến.Lấy D thuộc AC sao cho \(AD=\dfrac{1}{2}DC\).Kẻ ME//BD (E thuộc CD), BD cắt AM tại I
1)Chứng minh AD=DE=EC
2)Chứng minh I là trung điểm AM
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân
1. Cho tam giác ABC cân tại A. Trên tia đốicủa tia BC và CB lấy theo thứ tự điểm D và E sao cho BD = CE.
a) CMR: tam giác ADE cân.
b) Gọi M là trung điểm của BC. CMR: AM là tia phân giác của góc DAE và AM vuông góc với DE.
c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH = CK.
d_CMR: HK// BC
e) Cho HD cắt Ck ở N. CMR: A, M, R thẳng hàng.
2. Cho tam giác ABC vuông cân tại A. d là dduowgnf thẳng bất ì qua A (d không cắt đoạn BC). Từ B và C kẻ BD và CE cùng vuông góc với d.
a) CMR: BD // CE.
b) CMR: tam giác ADB = tam giác CEA.
c) CMR: bd + CE = DE.
d) Gọi M là trung điểm của BC. CMR: tam giác DAM = tam gaics ECM và tam giác DME vuông cân.
CO TAM GIAC ABC CAN TAI A
=>AB=AC( DN TAM GIÁC CÂN)
SUY RA GÓC ABC = GÓC ACB( DN TAM GIÁC CÂN)
CÓ GÓC ABC VÀ GÓC ABD LÀ 2 GÓC KỀ BÙ
SUY RA GÓC ABD+ GÓC ABC = 180 ĐỘ
CÓ GÓC ACB VÀ GÓC ACE LÀ 2 GÓC KỀ BÙ
SUY RA GÓC ACB + GÓC ACE = 180 ĐỘ
MÀ GÓC ABC = GÓC ACB( CMT)
SUY RA GÓC ABD+ GÓC ABC = GÓC ACB + ACE( =180 ĐỘ)
=> GÓC ABD= GÓC ACE
XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ:
AB=AC( CMT)
GÓC ABD = GỐC ACE ( GMT)
DB=EC( GT)
=> TAM GIÁC ADB = TAM GIÁC AEC( C-G-C)
=>AD=AE( 2 CẠNH TƯƠNG ỨNG)
=> TAM GIAC ADE CAN TAI A( DN TAM GIAC CAN)
b)CÓ TAM GIÁC ADE CÂN TẠI A( CMT)
=>GÓC D = GÓC E( ĐN TAM GIÁC CÂN)
CÓ M LÀ TRUNG ĐIỂM CỦA BC=>BM=CM
CO ME = MC+CE
MD=MB+BD
MA CE=BD
MB=MC
=>MD=ME
XÉT TAM GIÁC AMD VÀ TAM GIÁC AME CÓ:
AD= AE(CM CÂU a)
GÓC D=GÓC E(CMT)
MD=ME( CMT)
SUY RA TAM GIÁC AMD= TAM GIÁC AME( C-G-C)
=>GÓC ĐAM = GÓC EAM( 2 GÓC TƯƠNG ỨNG)
SUY RA AM LÀ TIA PHÂN GIÁC CỦA GÓC DAE
CÓ TAM GIÁC AMD = TAM GIÁC AME
SUY RA GÓC AMD = GÓC AME( 2 GÓC TƯƠNG ỨNG)
MÀ 2 GÓC NÀY LÀ 2 GÓC KỀ BÙ
SUY RA AMD+AME = 180 ĐỘ
CÓ GÓC AMD = GÓC AME = 180 ĐỘ :2 = 90 ĐỘ
SUY RA AM VUONG GOC VS DE
CHO BN 2 CAU TRC LAM NAY
NHO K CHO MINH NHA
CO TAM GIAC ADM = TAM GIAC ACE( CM O CAU A)
SUY RA GÓC DAB = GÓC EAC( 2 GÓC TƯƠNG ỨNG)
XÉT TAM GIC AHB VUÔNG TẠI H VÀ TAM GIÁC AKC VUÔNG TẠI K CÓ:
AB = AC ( CM Ở CÂU a)
GÓC DAB = GÓC EAC ( CMT)
=> TAM GIÁC AHB = TAM GIÁC AKC( CH-GN)
=> BH = CK( 2 CẠNH TƯƠNG ỨNG)
d)KHI NÀO MÌNH NGHĨ XONG MÌNH SẼ NS CHO CẬU
2
d) CÓ TAM GIÁC ADB = TAM GIÁC AEC( CM Ở CÂU a)
=> GÓC DAB = GÓC EAC( 2 GÓC TƯƠNG ỨNG)
XÉT TAM GIÁC AHB VUÔNG TẠI H VÀ TAM GIÁC AKC VUÔNG TẠI K CÓ:
GÓC DAB = GÓC EAC( CMT)
AB=AC( CM Ở CÂU a)
=> TAM GIÁC AHB = TAM GIÁC AKC( CH-GN)
=>BH=CK( 2 CẠNH TƯƠNG ỨNG)
ế) MÌNH QUÊN CÁCH CHỨNG MINH 3 ĐIỂM THẲNG HÀNG OY XIN LỖI NHA( CÁI ĐÓ M HỌC Ở ĐẦU NĂM LỚP 7 MÀ)
Cho tam giác ABC; 2 đường cao BD, CE. Gọi M,N lần lượt là trung điểm của BC, DE. Chứng minh MN vuông góc với DE