CMR không có ba số liên tiếp nào mà tổng các lập phương của chúng 2013
CMR nếu hai số tự nhiên a và b có tổng chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3.
nếu a + b chia hết cho 3
thì a chia hết cho 3
b chia hết cho 3
nên a3 + b3 chia hết cho 3
sai chỗ nào thì sửa giúp mik nha ^^
\(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\))
mà a+b chia hết cho 3 nên \(a^3+b^3\)chia hết cho 3
Gọi 2 số đó là a,b.
Theo bài ra ta có:a+b⋮6a+b⋮6
Xét hiệu:(a3+b3)−(a+b)(a3+b3)−(a+b)
=a3−a+b3−b=a3−a+b3−b
=a(a2−1)+b(b2−1)=a(a2−1)+b(b2−1)
=(a−1)(a+1)a+(b−1)(b+1)b=(a−1)(a+1)a+(b−1)(b+1)b
Mà tích 3 số tự nhiên liên tiếp luôn chia hết cho 3
⇒⇒(a−1)(a+1)a⋮3,(b−1)(b+1)b⋮3(a−1)(a+1)a⋮3,(b−1)(b+1)b⋮3
⇒⇒(a−1)(a+1)a+(b−1)(b+1)b⋮3(a−1)(a+1)a+(b−1)(b+1)b⋮3
⇒(a3−b3)−(a+b)⋮3⇒(a3−b3)−(a+b)⋮3
Mà a+b⋮3⇒a3+b3⋮3(ĐPCM)
Có hai số nào mà tổng của chúng bằng tích của chúng hay không?
co do la so 2 vi 2+2=4:2.2=4
Có 3 số tự nhiên nào mà tổng của chúng tận cùng là 4 và tích của chúng có tận cùng bằng 1 hay không ? Vì sao?
Tích của 3 số tận cùng là 1 => tích lẻ => cả ba trong số đó đều là số lẻ
Mà tổng của 3 số lẻ là 1 số lẻ không nên tận cùng với 4
=> Không tồn tại 3 số như vậy
Câu 1: Tìm số có 2 chữ số biết số đó gấp 2 lần tích của các chữ số của nó.
Câu 2: Tìm số lớn nhất có 3 chữ số thỏa mãn điều kiện số đó chia hết cho 9 và tổng các chữ số hàng trăm với chữ số hàng đơn vị chia hết cho 5.
Câu 3:
A: Tại sao 2 số tự nhiên có tổng không chia hết cho 2 thì tích của chúng lại chia hết cho 2?
B: Số 2006 có thể là tích của ba số tự nhiên liên tiếp hay không?
Bạn nào biết câu nào thì giúp mình làm câu ấy nha.
âu 1:
Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:
AB = 2 × A × B
Để giải phương trình này, ta thực hiện các bước sau:
Ta có A và B đều là các chữ số từ 1 đến 9, do đó AB là một số có hai chữ số từ 10 đến 99. Vì AB = 2 × A × B, nên A và B đều khác 0. Do đó, ta có thể giả sử A > B mà không mất tính tổng quát. Khi đó, ta có A < 5 (nếu A ≥ 5 thì AB ≥ 50, vượt quá giới hạn của số có hai chữ số). Với mỗi giá trị của A từ 1 đến 4, ta tính được giá trị tương ứng của B bằng cách chia AB cho 2A. Nếu B là một số nguyên từ 1 đến 9 thì ta đã tìm được một giá trị của AB.Kết quả là AB = 16 hoặc AB = 36.
Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.
Câu 2:
Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:
ABC chia hết cho 9. A + C chia hết cho 5.Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:
Vì ABC chia hết cho 9, nên tổng các chữ số của ABC cũng chia hết cho 9. Do đó, ta có A + B + C = 9k (với k là một số nguyên dương). Từ điều kiện thứ hai, ta suy ra A + C là một trong các giá trị 5, 10 hoặc 15. Nếu A + C = 5 thì B = 4 và C = 1. Như vậy, ta có ABC = 401, không chia hết cho 9. Nếu A + C = 10 thì B = 0 và tổng các chữ số của ABC là 10, do đó ABC chia hết cho 9. Ta có ABC = 990. Nếu A + C = 15 thì B = 0 và tổng các chữ số của ABC là 18, do đó ABC chia hết cho 9. Ta có ABC = 999.Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.
Câu 3:
A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:
ab = 2m × 2n = 2(m + n)
Vì m + n là một số tự nhiên, nên ab chia hết cho 2.
B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n
CMR tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9
gọi n-1,n,n+1 là 3 số nguyên liên tiếp
Ta có : ( n - 1 )3 + n3 + ( n + 1)3
= n3 - 3n2 + 3n - 13 + n3 + n3 + 3n2 + 3n + 3n + 13
= 3n3 + 6n
= 3n . ( n2 + 2 )
= 3n . [ ( n2 - 1 ) + 3 ]
= 9n + 3n . ( n - 1 ) . ( n + 1 ) ( vì n2 - 1 = ( n - 1 ) . ( n + 1 ) )
xét tích n ( n - 1 ) ( n + 1 ) là tích của 3 số nguyên liên tiếp
\(\Rightarrow\)n . ( n + 1 ) . ( n - 1 ) \(⋮\)3
\(\Rightarrow\)3n . ( n + 1 ) . ( n - 1 ) \(⋮\)9 ( 1 )
Mặt khác 9n \(⋮\)9 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)9n + 3n . ( n - 1 ) . ( n + 1 ) \(⋮\)9
hay ( n - 1 )3 + n3 + ( n + 1 )3
Vậy tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9
Gọi 3 số nguyên liên tiếp là:x-1,x,x+1
Ta có:\(\left(x-1\right)^3+x^3+\left(x+1\right)^3\)
\(=x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1\)
\(=3x^3+6x=3x^3-3x+9x=3x\left(x^2-1\right)+9x\)
\(=3x\left(x-1\right)\left(x+1\right)+9x\)
Vì \(x\left(x-1\right)\left(x+1\right)\) là tích của 3 số nguyên liên tiếp nên \(x\left(x-1\right)\left(x+1\right)⋮3\Rightarrow3x\left(x-1\right)\left(x+1\right)⋮9\)
Mà \(9x⋮9\) \(\Rightarrow3x\left(x-1\right)\left(x+1\right)+9x⋮9\)
\(\Rightarrowđpcm\)
Cho 6 chữ số 1,2,3,5,7,9. Tổng của tất cả các số có 5 chữ số khác nhau mà mỗi số đều chia hết cho 5, lập được từ các số trên.
là 5688860 đó bạn !!!!!!!!!!!!!!!!!!!!!!!!!!
k cho mình nhé!
tao ko biet voi hoi chu biet thi them vao eeeeee
Viết liên tiếp các số từ trái sang phải theo cách sau : Số đầu tiên là 1, số thứ 2 là 2, số thứ ba là chữ số tận cùng của tổng số thứ nhất và số thứ 2, số thứ tư là là chữ số tận cùng của tổng số thứ 2 và số thứ 3. Cứ tiếp tục như thế ta được dãy các số như sau : 1235831459437...... Trong dãy trên có xuất hiện số 2005 hay không?
Giải
Viết liên tiếp các số từ trái sang phải theo cách sau : Số đầu tiên là 1, số
thứ hai là 2, số thứ ba là chữ số tận cùng của tổng số thứ nhất và số thứ hai, số
thứ tư là chữ số tận cùng của tổng số thứ hai và số thứ ba. Cứ tiếp tục như thế
ta được dãy các số như sau : 1235831459437......
Trong dãy trên có xuất hiện số 2005 hay không ?
Viết liên tiếp các số từ trái sang phải theo cách sau : Số đầu tiên là 1, số thứ 2 là 2, số thứ ba là chữ số tận cùng của tổng số thứ nhất và số thứ 2, số thứ tư là là chữ số tận cùng của tổng số thứ 2 và số thứ 3. Cứ tiếp tục như thế ta được dãy các số như sau : 1235831459437...... Trong dãy trên có xuất hiện số 2005 hay không?
Tim 6 số chẵn liên tiếp,biết tổng trung bình cộng của chúng là 47. Bạn nào biết giúp mình với.mình cảm ơn!
Vì là số chẵn liên tiếp nên 6 số đó là : a+2; a+4; a+6; a+8; a+10; a+12 ( a thuộc N)
Ta có (a+2+a+4+a+6+a+8+a+10+a+12):6=47
6a+42=47x6=282
6a=282-42=240
a=40
6 số đó là 42;44;46;48;50;52
Bài làm:
6x + 30 = 47 . 6
=> x = 42.
Vậy các số đó là: 42; 44; 46; 48; 50; 52.
có tồn tại hay ko , một dãy gồm 5 số, ssao cho 2 số liên tiếp nào cũng có tổng là số dương, còn tổng của 5 số lại là số âm