Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khá Bảnh
Xem chi tiết
Đức Lộc
12 tháng 4 2019 lúc 19:18

Điều kiện xác định của phương trình: \(a\ne\pm b\)

Biến đổi phương trình:

(x - a)(a - b) + (x - b)(a + b) = - 2ab

<=> ax - bx - a2 + ab + ax + bx - ab - b2 = - 2ab

<=> 2ax = a2 + b2 - 2ab

<=> 2ax = (a - b)2               (1)

Nếu \(a\ne0\) thì \(x=\frac{\left(a-b\right)^2}{2a}\)

Nếu a = 0 thì (1) có dạng 0x = b2. Do \(a\ne b\) nên \(b\ne0\)nên phương trình vô nghiệm.

Kết luận:

Nếu \(\hept{\begin{cases}a\ne b\\a\ne\pm b\end{cases}}\) thì \(S=\left\{\frac{\left(a-b\right)^2}{2a}\right\}\)

Còn lại, \(S=\varnothing\)

Nguyen Bao Linh
Xem chi tiết
No ri do
1 tháng 2 2017 lúc 21:07

\(\frac{x-a}{a+b}+\frac{x-b}{a-b}=\frac{2ab}{b^2-a^2}\) (ĐKXĐ: a\(\pm\)b)

\(\Leftrightarrow\frac{\left(x-a\right)\left(a-b\right)+\left(x-b\right)\left(a+b\right)}{a^2-b^2}=\frac{-2ab}{a^2-b^2}\)

\(\Leftrightarrow\frac{-a^2+xa-xb+ab-b^2+xa+xb-ab+2ab}{a^2-b^2}=0\)

\(\Leftrightarrow-\left(a-b\right)^2+2xa=0\)

\(\Leftrightarrow x=\frac{\left(a-b\right)^2}{2a}\)

Vậy phương trình có nghiệm \(x=\frac{\left(a-b\right)^2}{2a}\)

Nguyen Bao Linh
2 tháng 2 2017 lúc 14:22

Giải

Điều kiện xác định của phương trình : \(a\ne\pm b\)

Biến đổi phương trình:

\(\left(x-a\right)\left(a-b\right)+\left(x-b\right)\left(a+b\right)=-2ab\)

\(\Leftrightarrow ax-bx-a^2+ab+ax+bx-ab-b^2=-2ab\)

\(\Leftrightarrow2ax=a^2+b^2-2ab\)

\(\Leftrightarrow2ax=\left(a-b\right)^2\)

Nếu \(a\ne0\) thì \(x=\frac{\left(a-b\right)^2}{2a}\)

Nếu a = 0 thì \(2ax=\left(a-b\right)^2\) có dạng \(0x=b^2\). Do \(a\ne b\) nên \(b\ne0\), phương trình vô nghiệm

Kết luận

Nếu \(a\ne0\), \(a\ne\pm b\) thì \(S=\left\{\frac{\left(a-b\right)^2}{2a}\right\}\)

Còn lại, \(S=\varnothing\)

Nguyen Bao Linh
3 tháng 2 2017 lúc 17:37

không có giá trị nào thỏa mãn

Nguyễn Võ Thảo Vy
Xem chi tiết
Nguyễn Nguyên Trung
Xem chi tiết
Trần Ngyễn Yến Vy
Xem chi tiết

a) \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)

\(\Leftrightarrow\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}+1+\frac{4x}{a+b+c}-4=0\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}+\frac{4x-4\left(a+b+c\right)}{a+b+c}=0\)

\(\Leftrightarrow\left(x-a-b-x\right)\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=0\)

Khách vãng lai đã xóa

b)đề bài như trên

\(\Leftrightarrow\left(\frac{x-a-b-c}{bc}\right)+\left(\frac{x-b}{ca}-\frac{1}{a}-\frac{1}{c}\right)+\left(\frac{x-c}{ab}-\frac{1}{a}-\frac{1}{b}\right)=0\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=0\)

Khách vãng lai đã xóa
☆MĭηɦღAηɦ❄
3 tháng 4 2020 lúc 14:14

\(a,\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)

\(a,\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}+1+\frac{4x}{a+b+c}-4=0\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}-\frac{4a+4b+4c-4x}{a+b+c}=0\)

\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}\right)=0\)

\(\Leftrightarrow a+b+c-x=0\)Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}\ne0\)

\(\Leftrightarrow x=a+b+c\)

Vậy phương trình có nghiệm \(x=a+b+c\)

Khách vãng lai đã xóa
Yim Yim
Xem chi tiết
nguyen le duy hung
Xem chi tiết
luyen hong dung
15 tháng 6 2018 lúc 16:05

ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)

Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)

      \(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)

Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x

Nếu \(a\ne b\)thì phương trình có nghiệm

\(\frac{2}{b-x}-\frac{1}{c-x}=0\)

\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)

\(\Rightarrow2c-2x-b+x=0\)

\(\Leftrightarrow-x=b-2c\)

\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)

Vậy ..............................................................................................

Hà Phương Trần Thị
Xem chi tiết
lê văn gia phát
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 14:49

2:

a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)

\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)

=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)

A=2 thì a^2+2=1

=>a^2=-1(loại)

=>A>2 với mọi a

b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)

=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)

=>(căn a+căn b)(a-2*căn ab+b)>=0

=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)

 

Gia Huy
31 tháng 7 2023 lúc 15:14

1

ĐK: `x>1`

PT trở thành:

\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)

Vậy PT vô nghiệm.

b

ĐK: \(x\ge2\)

Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))

=> \(x=t^2+2\)

PT trở thành: \(t^2+2-5t+2=0\)

\(\Leftrightarrow t^2-5t+4=0\)

nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)

\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)