Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
MCthoidai
Xem chi tiết
T.Ps
28 tháng 6 2019 lúc 8:33

#)Giải :

a)Ta có : \(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\)

Đặt \(\frac{a}{b}=\frac{c}{a}=k\Rightarrow\hept{\begin{cases}a=bk\\c=ak\end{cases}}\)

\(\hept{\begin{cases}\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\\\frac{c+a}{c-a}=\frac{ak+a}{ak-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\end{cases}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}}\Rightarrowđpcm\)

Lê Tài Bảo Châu
Xem chi tiết

\(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)\)

\(=\left[a.\left(a+b+c\right)+bc\right]\left[b.\left(a+b+c\right)+ac\right]\left[c.\left(a+b+c\right)+ab\right]\)

\(=\left(a^2+ab+ac+bc\right)\left(ba+b^2+bc+ac\right)\left(ca+cb+c^2+ab\right)\)

\(=\left[\left(a^2+ab\right)+\left(ac+bc\right)\right]\left[\left(ba+b^2\right)+\left(bc+ac\right)\right]\left[\left(ca+c^2\right)\left(cb+ab\right)\right]\)

\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(b+a\right)\right]\left[c\left(a+c\right)b\left(b+b\right)\right]\)

\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)

\(\Rightarrowđpcm\)

FL.Han_
1 tháng 10 2020 lúc 15:26

\(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)\)

\(=\left[a\left(a+b+c\right)+bc\right]\left[b\left(a+b+c\right)+ac\right]\left[c\left(a+b+c\right)+ab\right]\)

\(=\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)\left(ac+bc+c^2+ab\right)\)

\(=\left[\left(a^2+ab\right)+\left(ac+bc\right)\right]\left[\left(ab+b^2\right)+\left(bc+ac\right)\right]\left[\left(ac+c^2\right)+\left(bc+ab\right)\right]\)

\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[c\left(a+c\right)+b\left(a+c\right)\right]\)

\(=\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)

\(\Rightarrowđpcm\)

Khách vãng lai đã xóa
Bình Mạc
Xem chi tiết
Đình Sang Bùi
2 tháng 10 2018 lúc 22:21

Từ a+b=c Ta được a+b-c=0

Do đó:\(\left(a+b-c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=0\)(đccm)

Hoàng Sơn
2 tháng 10 2018 lúc 22:37

Có thể ( chỉ là có thể thôi ) các bạn chưa học hằng đẳng thức nâng cao nên mình sẽ chứng minh và dùng nó luôn , còn các bạn cứ lấy nó mà dung , bởi vì nó cũng có thể được coi là " định lý ", đại loại thế

Bổ đề : CMR: \(\left(a+b-c\right)^2=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)

\(\left(a+b-c\right)\left(a+b-c\right)=a^2+ab-ac+ab+b^2-bc-ac-bc+c^2\)

\(=a^2+b^2+c^2+\left(ab+ab\right)-\left(ac+ac\right)-\left(bc+bc\right)\)

\(=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)

Nhờ bổ đề trên\(\Rightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=a^2+b^2+c^2+2ab-2ac-2bc=\left(a+b-c\right)^2=0\)

\(\Rightarrow\)\(a+b-c=0\)vì \(\left(a+b-c\right)\ge0\)

\(\Rightarrow\)\(a+b=c\left(DPCM\right)\)

Còn nhiều hằng đẳng thức nâng cao nữa cũng kiểu dạng này, nếu bạn muốn biết thì hãy tự chứng minh nó và áp dụng nó vào bài như một bổ đề, mình chỉ chia sẽ kinh nghiệm vậy thôi

GOOD LUCK

Hoàng Sơn
2 tháng 10 2018 lúc 22:39

Ở trên là bài toán đảo và muốn giải bài của bạn thì bạn chỉ cần đảo ngược nó lại (Đừng lo , mình ko chép mẫu đâu)

tranquockhanh
Xem chi tiết
Tạ Quang Duy
3 tháng 10 2015 lúc 6:00

tính chất của đẳng thức + cm đẳng thức

Pham Ngoc Bao Chau
13 tháng 7 2016 lúc 14:58

kho qua

kiều nguyễn hoài thương
15 tháng 8 2016 lúc 20:52

mình cũng đang vướng bài đay nè

tran ngoc ly
Xem chi tiết
Nguyen Thi Thu Hang
Xem chi tiết
tran ngoc ly
Xem chi tiết
Đại gia không tiền
Xem chi tiết
zNkókz zKhôngz zNảnz
Xem chi tiết
Trần lâm nhi
Xem chi tiết
Ngô Ngọc Quỳnh Mai
30 tháng 11 2016 lúc 23:24

a2+b2-c= (a+b+c)2 - 2(a+c)(b+c) = -2(a+b)(b+c) = -2(a+b+c-b)(a+b+c-a) = -2ab

làm tương tự với 2 mẫu còn lại. Đến đây chắc em hiểu rồi phải không.