Chứng minh A=3+3^3+5+3^7+...+3^31 chia hết cho 3
A) Chứng minh: A=2^1+2^2+2^3+2^4+.........+2^2010 chia hết cho 3 và 7
B)Chứng minh:B=3^1+3^2+3^3+3^4+..........+2^2010 chia hết cho 4 và 13
C) Chứng minh C=5^1+5^2+5^3+5^4+.......+5^2010 chia hết cho 6 và 31
D) Chứng minh D=7^1+7^2+7^3+7^4+........+7^2010 chia hết cho 8 và 57
a/ Chứng minh: A = 2^1 + 2^2 + 2^3 + 2^4 +......+ 2^2010 chia hết cho 3 và 7
b/ Chứng minh: B = 3^1 + 3^2 + 3^3 + 3^4 +......+ 3^2010 chia hết cho 4 và 13
c/ Chứng minh: C = 5^1 + 5^2 + 5^3 + 5^4 +......+ 5^2010 chết hết cho 6 và 31
A=2^1+2^2+2^3+2^4+...+2^2010
=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)
=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)
=2.3+2^3.3+...+2^2010.3
=(2+2^3+2^2010).3
=> A chia het cho 3
Mà câu c bạn đánh chia hết thành chết hết rồi kìa
Chứng minh : A = 2mũ 1 + 2 mũ 2 + 2 mũ 3 + 2mũ 4 + ...+ 2 mũ 2010 chia hết cho 3&7
Chứng minh : C = 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ....+ 2 mũ 2010 chia hết cho 4 và 13
Chứng minh : B = 5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 +.....+ 5 mũ 2010 chia hết cho 6 và 31
Chứng minh : D = 7 mũ 1 + 7 mũ 2 + 7 mũ 3 + 7 mũ 4 +.....+ 7 mũ 2010 chia hết cho 8 và 57
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Giải:
A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010
A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_
A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3
A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3
A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)
A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7
A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.
Các câu còn lại làm tương tự như câu a nha bạn!
Chứng minh 3 +3^3+3^5+3^7+...+3^31 chia hết cho 30
=(3+3^3)+(3^5 + 3^7)+...+(3^30+3^31)
=3(1+9)+ 3^5(1+9)+...+3^30(1+9)
=3.10+3^5.10+....+3^30.10
=10(3+3^5+...+3^30)
Vi 30 = 3.10 ma 10(3+..+3^30) chia het cho 10.3
suy ra 10(3+...+3^30) chia het cho 30
vay 3+3^3+3^5+....+3^31 chia het cho 30
hình như câu trả lời này sai ở chỗ : (3+3^3 + .....+ phai la (3^29+3^30) chu coi lai di
Chứng minh: 3 + 3^3 + 3^5 +3^7 +... +3^31 chia hết cho 30
Ta có: 3+33+35+37+...+331= (3+33)+(35+37)+...+(329+331)
Có (31-1):2+1=16 số Có 16:2=8 cặp
=1(3+33)+34(3+33)+...+328(3+33)
=1.30+34.30+...+328.30
=30(1+34+...+328)
Vì 30 chia hết cho 30 nên 30(1+34+...328)chia hết cho 30
Hay 3+33+35+37+...+331 chia hết cho 30
Vậy 3+33+35+37+...+331 chia hết cho 30
1/Chứng minh
a/Chứng minh A=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4+.....+2 mũ 2010 chia hết cho3 và 7
b/Chứng minh B=3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4+.....+3 mũ 2010 chia hết cho 4 và 13
c/Chứng minh C=5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4+ +5 mũ 2010 chia hết cho 6 và 31
d/Chứng minh D=7 mũ 1 + 7 mũ 2 +7 mũ 3 + 7 mũ 4 +.....+7 mũ 2010 chia hết cho 8 và 57
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
Chứng minh A= 21+22+23+24+.........+22010 chia hết cho 3 và 7
Chứng minh A= 31+32+33+34+.........+22010 chia hết cho 4 và 13
Chứng minh A= 51+52+53+54+.........+52010 chia hết cho 6 và 31
Chứng minh A= 71+72+73+74+.........+72010 chia hết cho 8 và 57
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
Chứng minh rằng: 3+3^3+3^5+3^7+.....+3^31 chia hết cho 30
Ta có : 30 = 3 . 10
Mà 3 + 33 + 35 + 37 + ... + 331 chia hết cho 3 ( 2 )
3 + 33 + 35 + 37 + ... + 331
= ( 3 + 33 ) + ... + ( 329 + 331 )
= 3 . ( 1 + 32 ) + ... + 329 . ( 1 + 32 )
= 3 . 10 + ... + 329 . 10 \(⋮\)10 ( 2 )
Từ 1 và 2 => 3 + 33 + 35 + 37 + ... + 331 chia hết cho 3 , chia hết cho 10 => 3 + 33 + 35 + 37 + ... + 331 chia hết cho 30
Đề này tớ thi học kì I nè!
Ta có : A = 3 + 33 + 35 + 37 +....+ 331
A = (3 + 33) + (35 + 37) +....+ (329 + 331)
A = 3 ( 1+9) + 35 (1+9) + ....+ 329 (1+9)
A = 3. 10 + 35 .10 +.....+ 329 .10
A = 30 + 34 .(3.10) + ....+ 328 .(3.10)
A = 30 + 34 . 30 + ...+ 328 . 30
A = 30 .(1 + 34 + .....+ 328) chia hết cho 30
Vậy tổng trên chia hết cho 30
(CẬU YÊN TÂM, ĐÚNG 100% LUÔN)
3 + 33 + 35 + 37 + ...... . + 331
= ( 3 + 33 ) + ( 35 + 37 ) + ..... + ( 329 + 331 )
= 3.( 1 + 32 ) + 35.( 1 + 32 ) + ..... + 329.( 1 + 32 )
= 3.10 + 35.10 + ...... + 329 . 10
= 10.( 3 + 35 + ..... + 329 )
Vì 30 = 10 . 3
=> 10. ( 3 + 35 + .... + 329 ) chia hết cho 10.3
=> 3 + 33 + 35 + ..... + 331 chia hết cho 10.3
Vậy 3 + 33 + 35 + ..... + 331 chia hết cho 30
Chứng minh 2^1 + 2^2 +2^3 + 2^4 +.....+2^2010. chia hết cho 3 và 7 ( ^ là dấu mũ nhé).
Chứng minh 3^1 + 3^2 + 3^3 +.......+ 3^2010 chia hết cho 4 và 13
Chứng minh 5^1 + 5^2 + 5^3 + ........ + 5^2010 chia hết cho 6 và 31
Chứng minh 7^1 + 7^2 + 7^3 + .....+ 7^2010 chia hết cho 8 và 57
Mọi người chỉ trả lời một phần cũng ok thank mn nhiều
1. Ta có: A = 2^1+ 2^2 +2^3+2^4+....2^10
A= ( 2^1 + 2^2) + ( 2^3+2^4) +....( 2^9+ 2^10)
A= 3.( 2^1+2^3+2^5+...+2^1005)
Do 3 \(⋮\)3 => A\(⋮\)3
Ta có: A =.....
A= Ghép 3 số lại
A= 7. (2^1+ 2^4+...+2^670)
Do 7 \(⋮\)7 => A \(⋮\)7
2;3;4 đều ghép 2 hoặc 3 số như tke và phần trog ngoặc cx y hệt như tke, ko thay đổi
Duyệt nhanh....