Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nhem
Xem chi tiết
De Thuong
22 tháng 12 2015 lúc 9:24

Minh lam cau A) thoi duoc hong

Nguyễn Huỳnh Tuấn Kiệt
Xem chi tiết
Nguyen Thuy Anh
4 tháng 12 2014 lúc 16:16

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

Ngô Lê Bách
10 tháng 12 2014 lúc 10:48

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

Bách
4 tháng 2 2017 lúc 12:57

em chịu!!!!!!!!!!!

nguyenlengan
Xem chi tiết
Lê Hoài Duyên
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Nguyễn Hải Nam
10 tháng 12 2017 lúc 21:36

Thanks bạn

Đặng Thị Khánh Ly
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Khách vãng lai đã xóa
Nguyễn Thị Giang
Xem chi tiết
HUỲNH HƯƠNG LƯU
20 tháng 12 2014 lúc 8:29

=(3+3^3)+(3^5 + 3^7)+...+(3^30+3^31)

=3(1+9)+ 3^5(1+9)+...+3^30(1+9)

=3.10+3^5.10+....+3^30.10

=10(3+3^5+...+3^30)

Vi 30 = 3.10 ma 10(3+..+3^30) chia het cho 10.3

suy ra 10(3+...+3^30) chia het cho 30

vay 3+3^3+3^5+....+3^31 chia het cho 30

Nguyễn thị lan
9 tháng 10 2016 lúc 8:40

quá chuẩn cho chú em one

luffy
30 tháng 12 2016 lúc 12:37

hình như câu trả lời này sai ở chỗ : (3+3^3 +  .....+  phai la (3^29+3^30) chu coi lai di

Nam Nguyễn Thế
Xem chi tiết
J Cũng ĐC
31 tháng 12 2015 lúc 21:09

Ta có: 3+33+35+37+...+331= (3+33)+(35+37)+...+(329+331)

         Có (31-1):2+1=16 số      Có 16:2=8 cặp

                                        =1(3+33)+34(3+33)+...+328(3+33)

                                        =1.30+34.30+...+328.30

                                         =30(1+34+...+328)

Vì 30 chia hết cho 30 nên 30(1+34+...328)chia hết cho 30 

Hay 3+33+35+37+...+331 chia hết cho 30

        Vậy 3+33+35+37+...+331 chia hết cho 30

 

Lê Minh Hiền
Xem chi tiết
Đoàn Đức Hà
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Khách vãng lai đã xóa
Nguyễn Trần Việt Hưng
Xem chi tiết
Mai Ngọc
4 tháng 2 2016 lúc 20:25

+)A=2^1+2^2+2^3+2^4+...+2^2010

=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)

=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)

=>A=6+2^2.6+2^4.6+...+2^2008.6

=>A=6.(1+2^2+2^4+...+2^2008)

=>A=3.2.(1+2^2+2^4+...+2^2008)

=>A chia hết cho 3

A=2+2^2+2^3+2^4+...+2^2010

A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)

A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)

A=2.7+2^4.7+2^7.7+...+2^2008.7

A=7.(2+2^4+2^7+...+2^2008)

=> A chia hết cho 7

các phần khác làm tương tự

Đinh Đức Hùng
4 tháng 2 2016 lúc 20:35

A = 21 + 22 + 23 + 2+ .... + 22009 + 22010

=> A = ( 2+ 22 ) + ( 23 + 2) + .... + ( 22009 + 22010 )

=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )

=> A = 21.3 + 23.3 + .... + 22009.3

=> A = 3.( 21 + 23 + .... + 22009 )

Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )

A = 21 + 22 + 2+ 24 + 2+ 26 + .... + 22007 + 22008 + 22009

=> A = ( 21 + 22 + 23 ) + ( 24 + 2+ 26 ) + .... + ( 22007 + 22008 + 22009 )

=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )

=> A = 21.7 + 24.7 + .... + 22007.7

=> A = 7.( 21 + 24 + .... + 22007 )

Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )

Các ý sau tương tự .

Nguyễn Trần Việt Hưng
13 tháng 2 2016 lúc 15:52

lam minh cac cau khac di

 

Phạm Lê Trúc Anh
Xem chi tiết
nguyen duc thang
4 tháng 1 2018 lúc 11:13

Ta có : 30 = 3 . 10

Mà 3 + 33 + 35 + 3+ ... + 331 chia hết cho 3                       ( 2 )

3 + 33 + 35 + 3+ ... + 331 

= ( 3 + 33 ) + ... + ( 329 + 331 )

= 3 . ( 1 + 32 ) + ... + 329 . ( 1 + 32 )

= 3 . 10 + ... + 329 . 10 \(⋮\)10                                                   ( 2 )

Từ 1 và 2 => 3 + 33 + 35 + 3+ ... + 331 chia hết cho 3 , chia hết cho 10 => 3 + 33 + 35 + 3+ ... + 331 chia hết cho 30

Song Ngư (๖ۣۜO๖ۣۜX๖ۣۜA)
4 tháng 1 2018 lúc 11:17

Đề này tớ thi học kì I  nè!

Ta có : A = 3 + 33 + 35 + 37 +....+ 331

            A = (3 + 33) + (35 + 37) +....+ (329 + 331)

              A  = 3 ( 1+9)  + 35 (1+9) + ....+ 329 (1+9)

           A   = 3. 10    + 35 .10 +.....+ 329 .10

           A   =   30      +  34 .(3.10)     + ....+  328 .(3.10)

            A  =    30     +  34 . 30      + ...+ 328 . 30

           A   =   30 .(1 + 34 + .....+ 328) chia hết cho 30

                 Vậy tổng trên chia hết cho 30

(CẬU YÊN TÂM, ĐÚNG 100% LUÔN)

           

Nguyễn Phạm Hồng Anh
4 tháng 1 2018 lúc 11:18

3 + 33 + 35 + 37 + ...... . + 331

= ( 3 + 33 ) + ( 3+ 37 ) + ..... + ( 329 + 331 )

= 3.( 1 + 32 ) + 35.( 1 + 32 ) + ..... + 329.( 1 + 32 )

= 3.10 + 35.10 + ...... + 329 . 10

= 10.( 3 + 35 + ..... + 329 )

Vì 30 = 10 . 3

=> 10. ( 3 + 35 + .... + 329 ) chia hết cho 10.3

=> 3 + 33 + 35 + ..... + 331 chia hết cho 10.3

Vậy 3 + 33 + 35 + ..... + 331 chia hết cho 30

Trần Đình Anh
Xem chi tiết
Nguyễn Thùy Linh
25 tháng 7 2017 lúc 8:31

1. Ta có: A = 2^1+ 2^2 +2^3+2^4+....2^10

A= ( 2^1 + 2^2) + ( 2^3+2^4) +....( 2^9+ 2^10)

A= 3.( 2^1+2^3+2^5+...+2^1005)

Do 3 \(⋮\)3 => A\(⋮\)3

Ta có: A =.....

A= Ghép 3 số lại

A= 7. (2^1+ 2^4+...+2^670)

Do 7 \(⋮\)7 => A \(⋮\)7

2;3;4 đều ghép 2 hoặc 3 số như tke và phần trog ngoặc cx y hệt như tke, ko thay đổi

Duyệt nhanh....