cho A=1 - 1/2 + 1/3 - 1/4 +1/5 - 1/6 +..............+1/49 -1/50
Chứng tỏ 7/12<A<5/6
Cho A =1-1/2+1/3-1/4+...+1/49-1/50 Hãy chứng tỏ rằng 7/12<A<5/6
Cho A=1-1/2 +1/3 -1/4 +...+1/49 -1/50 Hãy chứng tỏ rằng 7/12<A<5/6
Chứng tỏ A > 7 biết A =1 -1/2+1/3-1/4+ 1/5-1/6+...+1/49-1/50
Cho \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)\(\frac{1}{50}\)
Hãy chứng tỏ rằng \(\frac{7}{12}< A< \frac{5}{6}\)
cho A = 1 -1/2 + 1/3 - 1/4 +....+1/49 - 1/50. chứng tỏ rằng 7/12<A
A=1 - 1/2 + 1/3 - 1/4 +..+ 1/49 - 1/50
A= 1-( 1/2 + 1/3 ) - ( 1/4 + 1/5 ) -.....-(1/48 + 1/49) - 1/50
A=1 - 5/6 - 9/20 -.....-97/2352 - /150
A= 1 -............cho con lai tu lam nha
cho A=1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
chứng minh rằng 7/12<A<5/6
cho A= 1-1/2+1/3-1/4+1/5-1/6+1/7-1/8+....1/49-1/50. Chứng minh A<5/6
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}< 5.\frac{1}{25}+10.\frac{1}{30}+10.\frac{1}{40}\)
\(A< \frac{1}{5}+\frac{1}{3}+\frac{1}{4}< \frac{1}{4}+\frac{1}{3}+\frac{1}{4}=\frac{5}{6}\left(đpcm\right)\)
A) Tính M: 3/4.8/9.15/16.9999/10000 B) Chứng tỏ rằng: 1/26+1/27+...+1/50=99/50-97/49+...+7/4-5/3+3/2-1
\(M=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}\)
\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99.101}{100.100}\)
\(=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)
Xét vế phải :
\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)
cho a=1=1\2+1\3-1\4+1\5...+1\49-1\50.Chung to rang 7\12<4<5\6