Tìm max của biểu thức
A=\(\frac{1}{a^4+b^4+c^4+abcd}+\frac{1}{b^4+c^4+d^4+abcd}+\frac{1}{c^4+d^4+a^4+abcd}+\frac{1}{d^4+a^4+b^4+abcd}\)
với mọi số thực a,b,c,d và abcd=1
Tìm giá trị lớn nhất của biểu thức :
\(\frac{1}{a^4+b^4+c^4+abcd}+\frac{1}{b^4+c^4+d^4+abcd}+\frac{1}{c^4+d^4+a^4+abcd}+\frac{1}{d^4+a^4+b^4+abcd}\)
biết a.b.c.d là các số thực dương và abcd=1
Đường link : Câu hỏi của Hà Lê - Toán lớp 9 - Học toán với OnlineMath
Ta có : a4 + b4 \(\ge\)2a2b2 ; b4 + c4 \(\ge\)2b2c2 ; a4 + c4 \(\ge\)2a2c2
\(\Rightarrow\)a4 + b4 + c4 \(\ge\)a2b2 + b2c2 + a2c2 ( 1 )
Lại có : a2b2 + b2c2 \(\ge\)2b2ac ; b2c2 + a2c2 \(\ge\)2c2ab ; a2b2 + a2c2 \(\ge\)2a2bc
\(\Rightarrow\)a2b2 + b2c2 + a2c2 \(\ge\)abc ( a + b + c ) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a4 + b4 + c4 \(\ge\) abc ( a + b + c )
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
Tương tự , b4 + c4 + d4 \(\ge\)bcd ( b + c + d ) ; a4 + b4 + d4 \(\ge\)abd ( a + b + d ) ; c4 + d4 + a4 \(\ge\)acd ( a + c + d )
\(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)
\(\frac{1}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\); \(\frac{1}{a^4+b^4+d^4+abcd}\le\frac{c}{a+b+c+d}\)
\(\frac{1}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)
Cộng từng vế theo vế , ta được :
A \(\le\)1 ( đặt A = biểu thức ấy nhé )
Vậy GTLN A = 1 \(\Leftrightarrow\)a = b = c = d = 1
cho số thực dương a,b,c,d. chứng minh:
\(\frac{1}{a^4+b^4+c^4+abcd}+\frac{1}{b^4+c^4+d^4+abcd}+\frac{1}{a^4+c^4+d^4+abcd}+\frac{1}{a^4+b^4+d^4+abcd}\le\frac{1}{abcd}\)
Ta chứng minh bất đẳng thức sau
Với x, y, z > 0 ta luôn có \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\) (1)
Theo BĐT Cô-si
\(x^4+x^4+y^4+z^4\ge4\sqrt[4]{x^8y^4z^4}=4x^2yz\)
\(y^4+y^4+z^4+x^4\ge4\sqrt[4]{y^8z^4x^4}=4y^2zx\)
\(z^4+z^4+x^4+y^4\ge4\sqrt[4]{z^8x^4y^4}=4z^2xy\)
Cộng vế theo vế ta được: \(4\left(x^4+y^4+z^4\right)\ge4\left(x^2yz+y^2zx+z^2xy\right)\)
\(\Leftrightarrow\) \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
Vậy (1) đc c/m
Bất đẳng thức cần c/m có thể viết lại thành
\(\frac{abcd}{a^4+b^4+c^4+abcd}+\frac{abcd}{b^4+c^4+d^4+abcd}+\frac{abcd}{c^4+d^4+a^4+abcd}+\frac{abcd}{d^4+a^4+b^4+abcd}\le1\)
Áp dụng (1) ta có
\(\frac{abcd}{a^4+b^4+c^4+abcd}\le\frac{abcd}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)
Tương tự
\(\frac{abcd}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\)
\(\frac{abcd}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)
\(\frac{abcd}{d^4+a^4+b^4+abcd}\le\frac{c}{a+b+c+d}\)
Cộng theo vế suy ra đpcm.
Cho a,b,c > 0 . Chứng minh :
\(\frac{1}{a^4+b^4+c^4+abcd}+\frac{1}{b^4+c^4+d^4+abcd}+\frac{1}{c^4+d^4+a^4+abcd}+\frac{1}{d^4+a^4+b^4+abcd}\le\frac{1}{abcd}\)
Theo BĐT AM-GM: \(a^4+b^4\ge2a^2b^2\)
Tương tự suy ra \(a^4+b^4+c^4\)\(\ge a^2b^2+b^2c^2+c^2a^2\)
Tiếp tục dùng AM-GM: \(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2ab^2c\)
Tương tự suy ra \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4+abcd\ge abc\left(a+b+c\right)+abcd\)\(=abc\left(a+b+c+d\right)\)
\(\Rightarrow\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)
Tương tự cho 3 BĐT còn lại rồi cộng theo vế:
\(VT\le\frac{a+b+c+d}{abcd\left(a+b+c+d\right)}=\frac{1}{abcd}=VP\)
Cho a,b,c,d >0. Chứng minh:
\(\frac{1}{a^4+b^4+c^4+abcd^{ }}+\frac{1}{a^4+b^4+d^4+abcd}+\frac{1}{a^4+c^4+d^4+abcd^{ }^{ }}+\frac{1}{b^4+c^4+d^4+abcd}\le\frac{1}{abcd}\)
Hon ca su quan tam: quan tâm thế mà cũng đòi lấu nick là quan tâm
giỏi thì làm đừng ở đó mà phỉ báng người khác
Đồ Hèn TA KHINH!!!!!!!!!!!!!!
chứng minh các bất đẳng thức sau:
a) \(\frac{a^4}{b}+\frac{b^4}{c}+\frac{c^4}{a}\ge3abc,\left(\forall a,b,c>0\right)\)
b) \(\left(\frac{a+b+c+d}{4}\right)^4\ge abcd,\left(\forall a,b,c,d\ge0\right)\)
c) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c},\left(\forall a,b,c>0\right)\)
d) \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6,\left(\forall a,b,c>0\right)\)
Đội tuyển toán bơ vào đấy giúp với!
Đề bài:cho 4 số a,b,c,d khác 0 thỏa mãn abcd = 1 và a+b+c+d=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\).Chứng minh rằng tồn tại 2 số trong 4 số bằng 1.
Cảm ơn trước bạn nào giải được!
Ta có: abcd=1 và a+b+c+d=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\)
Do đó: a+b-\(\left(\frac{1}{a}+\frac{1}{b}\right)+c+d-\left(\frac{1}{c}+\frac{1}{d}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(1-\frac{1}{ab}\right)+\left(c+d\right)\left(1-\frac{1}{cd}\right)=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(ab-1\right)}{ab}+\left(c+d\right)\left(1-ab\right)=0\)
\(\Leftrightarrow\left(ab-1\right)\left(\frac{a+b}{ab}-c-d\right)=0\)
\(\Leftrightarrow\left(ab-1\right)\left(a+b-abc-abd\right)=0\)
\(\Leftrightarrow\left(ab-1\right)\left[a\left(1-bc\right)+b\left(1-ad\right)\right]=0\)
\(\Leftrightarrow\left(ab-1\right)\left[a\left(1-bc\right)+b\left(abcd-ad\right)\right]=0\)
\(\Leftrightarrow\left(ab-1\right)\left(1-bc\right)\left(a-abd\right)=0\)
\(\Leftrightarrow a\left(ab-1\right)\left(1-bc\right)\left(1-bd\right)=0\)
<=> ab-1=0 hoặc 1-bc=0 hoặc 1-bd=0
<=> ab=1 hoặc bc=1 hoặc bd=1
\(\Leftrightarrow a\left(ab-1\right)\left(1-bc\right)\left(1-bd\right)=0\)
\((\frac{a+b+c+d}{4})^4\ge abcd\text{ với a, b, c, d}\ge0\)
Cho tù giác ABCD có AB = a,BC = b,CD = c,DA = d. Chứng minh rằng :
1. S ABCD ≤ 1/4 (a + c)(b + d).
2. S ABCD ≤1/4 (a^2+ b^2+ c^2 + d^2 ).
Giúp mình với mọi người ! Cảm ơn mọi người !!!
Cho 4 số thực dương a,b,c,d thỏa mãn a+b+c+d = 4
Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)
giỏi thì làm bài nÀY nèk
chứ mấy bác cứ đăng linh ta linh tinh lên online math
Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ
đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh
bạn hiểu nhầm rồi mình bảo mấy cái thằng nó cứ đăng vớ vẩn nên bảo cái bọn đấy làm bài này của bạn đó mà