Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Văn thành
Xem chi tiết
Dương Dương
30 tháng 4 2019 lúc 20:12

Đường link : Câu hỏi của Hà Lê - Toán lớp 9 - Học toán với OnlineMath

Thanh Tùng DZ
30 tháng 4 2019 lúc 21:04

Ta có : a4 + b4 \(\ge\)2a2b2 ; b4 + c4 \(\ge\)2b2c2 ; a4 + c4 \(\ge\)2a2c2

\(\Rightarrow\)a4 + b4 + c4 \(\ge\)a2b2 + b2c2 + a2c2 ( 1 )

Lại có : a2b2 + b2c2 \(\ge\)2b2ac ; b2c2 + a2c2 \(\ge\)2c2ab ; a2b2 + a2c2 \(\ge\)2a2bc

\(\Rightarrow\)a2b2 + b2c2 + a2c2 \(\ge\)abc ( a + b + c ) ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a4 + b4 + c4 \(\ge\) abc ( a + b + c ) 

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

Tương tự , b4 + c4 + d4 ​​​\(\ge\)​bcd ( b + c + d ) ; a4 + b4 + d4 ​\(\ge\)​abd ( a + b + d ) ; c4 + d4 + a4 ​\(\ge\)​acd ( a + c + d ) 

\(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)

\(\frac{1}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\)\(\frac{1}{a^4+b^4+d^4+abcd}\le\frac{c}{a+b+c+d}\)

\(\frac{1}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)

Cộng từng vế theo vế , ta được : 

\(\le\)1  ( đặt A = biểu thức ấy nhé )

Vậy GTLN A = 1 \(\Leftrightarrow\)a = b = c = d = 1

Hà Lê
Xem chi tiết
Thiên An
12 tháng 7 2017 lúc 17:52

Ta chứng minh bất đẳng thức sau  

Với x, y, z > 0 ta luôn có  \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)  (1)

Theo BĐT Cô-si

\(x^4+x^4+y^4+z^4\ge4\sqrt[4]{x^8y^4z^4}=4x^2yz\)

\(y^4+y^4+z^4+x^4\ge4\sqrt[4]{y^8z^4x^4}=4y^2zx\)

\(z^4+z^4+x^4+y^4\ge4\sqrt[4]{z^8x^4y^4}=4z^2xy\)

Cộng vế theo vế ta được:  \(4\left(x^4+y^4+z^4\right)\ge4\left(x^2yz+y^2zx+z^2xy\right)\)

\(\Leftrightarrow\)  \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)

Vậy (1) đc c/m

Bất đẳng thức cần c/m có thể viết lại thành

\(\frac{abcd}{a^4+b^4+c^4+abcd}+\frac{abcd}{b^4+c^4+d^4+abcd}+\frac{abcd}{c^4+d^4+a^4+abcd}+\frac{abcd}{d^4+a^4+b^4+abcd}\le1\)

Áp dụng (1) ta có  

\(\frac{abcd}{a^4+b^4+c^4+abcd}\le\frac{abcd}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)

Tương tự  

\(\frac{abcd}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\)

\(\frac{abcd}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)

\(\frac{abcd}{d^4+a^4+b^4+abcd}\le\frac{c}{a+b+c+d}\)

Cộng theo vế suy ra đpcm.

Mai Thành Đạt
Xem chi tiết
Thắng Nguyễn
6 tháng 1 2018 lúc 0:16

Theo BĐT AM-GM: \(a^4+b^4\ge2a^2b^2\)

Tương tự suy ra \(a^4+b^4+c^4\)\(\ge a^2b^2+b^2c^2+c^2a^2\)

Tiếp tục dùng AM-GM: \(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2ab^2c\)

Tương tự suy ra \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4+abcd\ge abc\left(a+b+c\right)+abcd\)\(=abc\left(a+b+c+d\right)\)

\(\Rightarrow\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)

Tương tự cho 3 BĐT còn lại rồi cộng theo vế:

\(VT\le\frac{a+b+c+d}{abcd\left(a+b+c+d\right)}=\frac{1}{abcd}=VP\)

Thắng  Hoàng
5 tháng 1 2018 lúc 18:56

sorry nha!Mik ko bít làm.???

Hoàng Mai Hương
Xem chi tiết
Hon ca su quan tam
8 tháng 4 2016 lúc 21:58

ngu nguoi

Hon ca su quan tam
8 tháng 4 2016 lúc 21:58

ngu nguoi

Đinh Phương Nga
8 tháng 4 2016 lúc 22:03

Hon ca su quan tam: quan tâm thế mà cũng đòi lấu nick là quan tâm

giỏi thì làm đừng ở đó mà phỉ báng người khác

Đồ Hèn TA KHINH!!!!!!!!!!!!!!

Mộc Miên
Xem chi tiết
Thiện Nguyễn
25 tháng 3 2020 lúc 11:07
https://i.imgur.com/bx8s8Hy.jpg
Khách vãng lai đã xóa
Thiện Nguyễn
25 tháng 3 2020 lúc 11:07
https://i.imgur.com/AISWXxC.jpg
Khách vãng lai đã xóa
nguyen duc thang
Xem chi tiết
Tran Le Khanh Linh
5 tháng 3 2020 lúc 19:48

Ta có: abcd=1 và a+b+c+d=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\)

Do đó: a+b-\(\left(\frac{1}{a}+\frac{1}{b}\right)+c+d-\left(\frac{1}{c}+\frac{1}{d}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(1-\frac{1}{ab}\right)+\left(c+d\right)\left(1-\frac{1}{cd}\right)=0\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(ab-1\right)}{ab}+\left(c+d\right)\left(1-ab\right)=0\)

\(\Leftrightarrow\left(ab-1\right)\left(\frac{a+b}{ab}-c-d\right)=0\)

\(\Leftrightarrow\left(ab-1\right)\left(a+b-abc-abd\right)=0\)

\(\Leftrightarrow\left(ab-1\right)\left[a\left(1-bc\right)+b\left(1-ad\right)\right]=0\)

\(\Leftrightarrow\left(ab-1\right)\left[a\left(1-bc\right)+b\left(abcd-ad\right)\right]=0\)

\(\Leftrightarrow\left(ab-1\right)\left(1-bc\right)\left(a-abd\right)=0\)

\(\Leftrightarrow a\left(ab-1\right)\left(1-bc\right)\left(1-bd\right)=0\)

<=> ab-1=0 hoặc 1-bc=0 hoặc 1-bd=0

<=> ab=1 hoặc bc=1 hoặc bd=1

\(\Leftrightarrow a\left(ab-1\right)\left(1-bc\right)\left(1-bd\right)=0\)

Khách vãng lai đã xóa
tuấn lê
Xem chi tiết
Ngô Bá Khá
Xem chi tiết
huy nguyễn phương
Xem chi tiết
Mon Đô Rê
11 tháng 11 2018 lúc 9:59

giỏi thì làm bài nÀY nèk

chứ mấy bác cứ đăng linh ta linh tinh lên online math

huy nguyễn phương
11 tháng 11 2018 lúc 10:21

Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ

đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh

Mon Đô Rê
16 tháng 11 2018 lúc 21:24

bạn hiểu nhầm rồi mình bảo mấy cái thằng nó cứ đăng vớ vẩn nên bảo cái bọn đấy làm bài này của bạn đó mà