cho m là điểm nằm trong tam giác đều ABC. Chứng minh rằng ba cạnh MA MB MC là độ dài ba cạnh của một tam giác
Cho tam giác ABC đều và điểm m thuộc miền trong của tam giác. Chứng minh rằng tồn tại một tam giác có 3 đỉnh thuộc 3 cạnh của tam giác ABC và ba cạnh có độ dài bằng MA, MB ,MC
Cho tam giác ABC đều và điểm m thuộc miền trong của tam giác. Chứng minh rằng tồn tại một tam giác có 3 đỉnh thuộc 3 cạnh của tam giác ABC và ba cạnh có độ dài bằng MA, MB ,MC
Bài 1. Cho điểm M nằm trong tam giác đều ABC. Chứng minh rằng MA, MB, MC là độ dài ba cạnh của một tam giác. Bài 5. Cho hình thang cân ABCD (AB k CD). AC cắt BD tại O. Gọi E, F, G lần lượt là trung điểm của BC, OA, OD. Biết rằng tam giác EF G đều. Chứng minh rằng AOB, COD cũng là các tam giác đều.
Bài 5. Cho hình thang cân ABCD (AB k CD). AC cắt BD tại O. Gọi E, F, G lần lượt là trung điểm của BC, OA, OD. Biết rằng tam giác EF G đều. Chứng minh rằng AOB, COD cũng là các tam giác đều.
Cho tam giác nhọn ABC.Từ một điểm M nằm trong tam giác, vẽ MD,ME,MF lần lượt vuông góc với BC,AC,AB.
CMR: max{MA,MB,MC} ... 2min{MD,ME,MF}
( trong đó: max{MA,MB,MC} là độ dài cạnh lớn nhất trong ba cạnh MA,MB,MC.
1 ) Cho tam giác ABC . Gọi M là một điểm nằm trong tam giác . Chứng minh rằng : MA + MB + MC > nửa chu vi tam giác đó
2 ) Cho tam giác ABC . Gọi M là trung điểm cạnh BC . Chứng minh rằng : AM < AB + AC / 2
1) Cho tam giác ABC . M là điểm nằm trong tam giác ABC đường thẳng qua M song song với AC cắt BC tại D , đường thẳng qua M song song với BC cắt AB tại E , đường thẳng qua M song song với AB cắt AC tại F .
a) chứng minh : các tứ giác BEMD , AFME ,DMFC là các hình thang cân .
b) độ dài các đoạn thẳng MA ,MB ,MC bằng độ dài ba cạnh của một tam giác nào đó
Cho tam giác ABC đều cạnh a, M là một điểm bất kỳ ở trong tam giác ABC. Chứng minh rằng \(MA+MB+MC>\frac{a\sqrt{3}}{2}\)
Có MA+MB > AB
MB+MC > BC Bất đẳng thức trong tam giác
MA + MC > AC
Cộng vế với vết của 3 bất đẳng thức trên ta có2MA + 2MB + 2MC > AB + BC + AC = 3aMA + MB + MC > 3a/2 > a√3/2 (đfcm)cho tam giác ABC là tam giác đều. M là điểm nằm trong tam giác . cmr độ dài các đoạn MA, MB, MC là độ dài 3 cạnh của 1 tam giác
GIÚP MÌNH VỚI !
Câu hỏi của Lưu Văn Dũng - Toán lớp 8 - Học toán với OnlineMath
Cho một điểm M nằm bên trong tam giác đều ABC. Chứng minh rằng trong ba đoạn thẳng MA, MB, MC đoạn lớn nhất nhỏ hơn tổng hai đoạn kia.