Tìm x để \(\frac{3}{2+\sqrt{x}}\) = \(\frac{6}{5}\)
Tính A=\(\left(\frac{2}{\sqrt{5}-3}-\frac{2}{\sqrt{5}+3}\right)×\frac{\sqrt{3}-3}{1-\sqrt{3}}+3\sqrt{27}\)
B=\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)×\left(11+\sqrt{6}\right)\)
Tìm x để E=\(\sqrt{x-5}+\sqrt{7}\)nhỏ nhất
Tìm x để F=\(\frac{4-\sqrt{x}}{\sqrt{x}+2}\)lớn nhất
\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\)
a, tìm gtri của x để bthuc M có nghĩa và rút gọn bthức M
b, tìm x thuộc Z để M=5
Để M có nghĩa thì \(\hept{\begin{cases}\sqrt{x}-3\ne0\\2-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}}\)
ta có \(M=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b.\(M=5=\frac{\sqrt{x}+1}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
Cho \(M=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{3-\sqrt{x}}\)
a) Tìm điều kiện để xác định M và rút gọn M.
b) Tìm x để M là số nguyên.
b) \(M=\frac{2}{\sqrt{x}-3}\in Z\Leftrightarrow\sqrt{x}-3\) là ước của 2.
\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1,\pm2\right\}\Leftrightarrow\sqrt{x}\in\left\{1,2,3,4,5\right\}\)
\(\Leftrightarrow x\in\left\{1,4,16,25\right\}\)
Đối chiếu điều kiện ta có:
\(x\in\left\{1,16,25\right\}\)
Để M là số nguyên thì \(\frac{2}{\sqrt{x}-3}\in Z\) Suy ra \(\frac{2}{\sqrt{x}-3}=k\left(k\in N\right)\)
\(\Rightarrow\sqrt{x}-3=\frac{2}{k}\Leftrightarrow\sqrt{x}=\frac{2}{k}+3.\)\(\Rightarrow x=\left(\frac{2}{k}+3\right)^2\left(k\ne0\right).\)
Mà \(\sqrt{x}\ge0\Rightarrow\frac{2}{k}+3\ge0\Leftrightarrow\frac{2+3k}{k}\ge0\Leftrightarrow\hept{\begin{cases}k>0\\k\le-\frac{2}{3}\end{cases}\Leftrightarrow k\ne0\left(do-k\in Z\right).}\)
Lại theo ĐKXĐ ta có \(\hept{\begin{cases}\sqrt{x}\ne2\\\sqrt{x}\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{\sqrt{x}-3}\ne-2\\\frac{2}{\sqrt{x}-3}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}k\ne-2\\k\ne0\end{cases}.}}\)
Kết hợp lại ta có \(k\in Z,k\ne-2,k\ne0\)
Vậy để M là số nguyên thì \(x=\left(\frac{2}{k}+3\right)^2\)với \(k\in Z,k\ne-2,k\ne0.\)
Có sai chỗ nào mong mọi người chỉ cho .Cảm ơn nhiều
P/S: Hầu hết các câu trả lời đều là tìm x nguyên , nhưng đề bài là tìm x thôi ạ!
a) Điều kiện xác định \(\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne\\\sqrt{x}-3\ne0\end{cases}0}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(M=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{2}{\sqrt{x}-3}\)
Tìm x để B=3A,biếtA=\(\left(\frac{5+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}+\frac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{2}}\right)\) /\(\left(\frac{1}{2\sqrt{5}+3\sqrt{2}}-\frac{1}{2\sqrt{5}-3\sqrt{2}}\right)\)
B=\(\frac{2x^4-x^3+2x^2+x-4}{2x^3-x^2-2x+1}\)
\(p=\frac{2\sqrt{x}-9}{x-5\sqrt{2}+6}-\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) rút gọn P
b) tính giá trị của biểu thức khi x=\(\frac{2}{3-\sqrt{5}}\)
c) tìm x để p <1
d) tìm x để P nguyên
e) tìm GTNN của 1/P
Cho biểu thức M=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x+3}}{2-\sqrt{x}}\)
a/ Tìm điều kiễn xác địch của x để M có nghĩa và rút gon M
b/ Tìm x để M bằng 5
c/ tìm x thuộc z để m thuộc z
Q = \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a)Tìm điều kiện xác định
b)Rút gọn
c)Tìm x nguyên để Q nguyên
d)Tìm x để Q > 0
Đặt \(\sqrt{x}=a\) , a \(\ge0\)
a , Khi đó biểu thức trở thành :
Q = \(\frac{2a-9}{a^2-5a+6}-\frac{a+3}{a-2}-\frac{2a+1}{3-a}\)
Đến đây làm như lớp 8 thôi
A= \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{x-6\sqrt{5}+5}{2x+7\sqrt{x}-4}\)
a) Tìm TXĐ của A
b) Rút gọn A
c) Tìm x để A >\(\frac{1}{2}\)
d) Tìm x thuộc Z để A thuộc Z
đè hinh như là 6\(\sqrt{x}\) nhi bạn
Cho A=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Tìm điều kiện để A có nghĩa
b) rút gon A
c) Tìm x thuộc Z để A thuộc Z
a) \(ĐKXĐ:x\ne4;x\ne9\)
b) \(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
c) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) (ĐK: x thuộc Z)
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
x | 2 | \(\sqrt{2}\) | \(\sqrt{5}\) | \(\sqrt{1}\) | \(\sqrt{7}\) | \(\varnothing\) |
Vậy để A thuộc Z khi x = {2;\(\sqrt{2};\sqrt{5};\sqrt{1};\sqrt{7}\) }
\(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Rút gọn
b) Tìm x để A < 1
a ) \(ĐKXĐ\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(A=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2+\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x-3}\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b ) \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}< 1\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\)
\(\Leftrightarrow\frac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\frac{4}{\sqrt{x}-3}< 0\)
\(\sqrt{x}-3< 0\)
\(\Leftrightarrow x< 9\)
Vậy với \(0\le x\le9;x\ne4\) thì ...
Chúc bạn học tốt !!!