Tìm nghiệm nguyên dương của pt: 2^x +(x^2+1)(y^2-6y+8)=0.
2^x + (x^2 + 1). (y^2 - 6y + 8) =0
1. tìm nghiệm nguyên dương của pt: 5(x+y+z+t) +10 = 2xyzt. bài này lm mãi k ra :)) :P
2. tìm nghiệm nguyên dương của pt: y^4 +y^2 = x^4 + x^3 + x^2 +x
xin câu tl chi tiết ak...
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
Tìm x,y để các phương trình sau nghiệm nguyên:
a, x^2 + y^2 - 2x - 6y + 10 = 0
b, 4x^2 + y^2 + 4x - 6y - 24 = 0
c ,x^2 + y^2 - x - y - 8 = 0
Tìm các số nguyên dương x , y thỏa mãn : 2x + ( x2 + 1 ) x ( y2 - 6y + 8 ) = 0
Tìm các số x,y,z nguyên dương thỏa mãn: 2x + ( x2 +1)(y2 - 6y +8) = 0
Vì \(2^x>0,x^2+1>0\) nên \(y^2-6y+8< 0\Leftrightarrow\left(y-3\right)^2< 1\)
\(\Leftrightarrow\left|y-3\right|< 1\)\(\Leftrightarrow2< y< 4\)\(\Rightarrow y=3\) thay vào \(2^x+\left(x^2+1\right)\left(y^2-6y+8\right)=0\) ta được:\(2^x=x^2+1\)
Xét x=1 thì 2=2 (thỏa mãn)
Xét x\(\ge\)2 thì \(2^x⋮4\) mà \(x^2+1\) chia 4 chỉ dư 1 và 2(vô lí)
Vậy x=1,y=3 thỏa mãn
Tìm nghiệm nguyên của pt:
a) x2 + x + 6 = y2
b) 3/2 x^2 - 6y^2 = x + 332
tìm nghiệm nguyên của PT:\(x^2y^2-x^2-6y^2=2xy\)
tìm m là số nguyên dương để pt x^2-2m^2x -4m-1=0 có nghiệm nguyên
Để phương trình x^2 - 2m^2x - 4m - 1 = 0 có nghiệm nguyên, ta cần tìm giá trị của m sao cho delta (đại diện cho biểu thức bên trong căn bậc hai trong công thức nghiệm) là một số chính phương.
Công thức tính delta là: delta = b^2 - 4ac
Áp dụng vào phương trình đã cho, ta có:
a = 1, b = -2m^2, c = -4m - 1
delta = (-2m^2)^2 - 4(1)(-4m - 1)
= 4m^4 + 16m + 4
Để delta là một số chính phương, ta cần tìm các giá trị nguyên dương của m để đạt được điều kiện này. Ta có thể thử từng giá trị nguyên dương của m và kiểm tra xem delta có là số chính phương hay không.
Ví dụ, với m = 1, ta có:
delta = 4(1)^4 + 16(1) + 4
= 4 + 16 + 4
= 24
24 không phải là số chính phương.
Tiếp tục thử một số giá trị nguyên dương khác cho m, ta có:
Với m = 2, delta = 108 (không phải số chính phương)Với m = 3, delta = 400 (không phải số chính phương)Với m = 4, delta = 1004 (không phải số chính phương)Với m = 5, delta = 2016 (không phải số chính phương)Với m = 6, delta = 3484 (không phải số chính phương)Qua việc thử nghiệm, ta không tìm được giá trị nguyên dương của m để delta là một số chính phương. Do đó, không có giá trị của m thỏa mãn yêu cầu đề bài.
15:37