Cho tam giác ABC. Trên tia đối AB lấy điểm D sao cho AD=AC. Trên tia đối AC lấy điểm E sao cho AE=AC. Tứ giác BDEC là hình thang.
Cho tam giác ABC cân tại A. Trên tia đối của AC lấy điểm D, trên tia đối đó của AB lấy điểm E sao cho AD = AE, chứng minh tứ giác BDEC là hình thang cân
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD =AC và trên tia đối của AC lấy điểm E sao cho AE = AB. CM : BCDE là hình thang
hai tam giác EAD = BAC ( c - g -c)
=> góc DEA = CBA
tam giác EAB đông dạng CAD (c - g - c)
=> goc AEB = ACD
=> EB // CD
lại có BED = BEA + AED
góc EBC = EBA + ABC
mà góc BEA = EBA ( tam giác BAE cân taịA)
AED = ABC (cmt)
=> BCDE la hinh thang can
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD=AC. Trên tia đối của tia AC lấy điểm E sao cho AE=AB. Chứng minh tứ giác BCDE là hình thang
Ai làm ơn giải nhanh giúp e đang cần gấp
Cho tam giác ABC trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB. Chứng minh BCDE là hình thang.
( Hình tự vẽ nha )
Ta có : AB = AE ( gt )
AD = AC ( gt )
Do đó : AB + AD = AC + AE
=> BD = EC
=> Tứ giác BDEC là hình thang ( vì trong hình thang có hai đường chéo bàng nhau )
Cho tam giác ABC. Trên tia đối của AB lấy điểm D sao cho AD= AC và trên tia đối của tia AC lấy điểm E sao cho AE= AB. Chứng minh BCDE là hình thang
Hình:
Giải:
Ta có:
\(AB+AD=AC+AE\) (Vì \(AB=AE;AC=AD\))
\(\Leftrightarrow BD=CE\)
=> Tứ giác BCDE là hình thang (vì trong hình thang hai đường chéo bằng nhau)
Vậy tứ giác BCDE là hình thang (đpcm)
Cho tam giác ABC . Trên tia đối tia AB lấy điểm D sao cho AD= AC . Trên tia đối của tia AC lấy điểm E sao cho AE+ AB . Chứng minh rằng BCDE là hình thang
Cho tam giác đều ABC trên tia đối của tia AB lấy điểm D trên tia đối của tia AC lấy điểm E sao cho AD=AE gọi M, N, P, Q theo thứ tự là trung điểm của các đoạn thẳng BE, AD, AB, AC chứng minh tứ giác BCDE là hình thang cân và tứ giác CNEQ là hìn thang
Đề bài bị sai
Đề đúng: Gọi M, N, P, Q theo thứ tự là trung điểm của các đoạn thẳng BE; AD; AC; AB.
Bài giải:
a) \(\Delta\)ABC đều
=> ^BAC = 60 độ
mà ^ EAD = ^BAC ( đối đỉnh)
=> ^EAD = 60 độ
Xét \(\Delta\) EAD có ^EAD = 60 độ và AE = AD
=> \(\Delta\)EAD đều
=> ^EDA = ^ABC (= 60 độ ) mà hai góc này ở vị trí so le trong
=> ED//BC (1)
Xét \(\Delta\) EAB và \(\Delta\)DAC có:
AE = AD ;
^ EAB = ^DAC ( đối đỉnh)
AB = AC
=> \(\Delta\)EAB = \(\Delta\)DAC
=> ^BEA = ^CDA
mà ^ AED = ^ ADE ( \(\Delta\)AED đều )
=> ^ BEA + ^AED = ^CDA + ^DAC
=> ^BED = ^CDA (2)
Từ (1) ; (2) => Tứ giác BEDC là hình thang cân.
b) ED // BC ( theo 1)
=> \(\frac{AE}{AC}=\frac{AD}{AB}=\frac{2AN}{2AQ}=\frac{AN}{AQ}\)
=> \(\frac{AE}{AC}=\frac{AN}{AQ}\)
=> EN//CQ
=> CNEQ là hình thang.
cho tam giác ABC cân tại A , trên tia đối của AC lấy điểm D , trên tia đối của AB lấy điểm E sao cho BC//DE cm tứ giác BDEC là hình thang cân
A,B 654
chúc học tốt
đáp án:
A,B 654
k cho mk nhé
chúc bn hok tốt
cho tam giác đều ABC. trên tia đối của tia AB lấy điểm D. Trên tia đối của tia AC lấy E sao cho AD=AE. Gọi N,Q theo thứ tự là trung điểm của AD, AB. Chứng minh: tứ giác CNEQ là hình thang.