Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê hữu gia khánh
Xem chi tiết
T.Ps
26 tháng 6 2019 lúc 16:04

#)Giải :

Ta có : \(\frac{a+2019}{b+2019}=\frac{a}{b+2019}+\frac{2019}{b+2019}< \frac{a}{b}\)

\(\Rightarrow\frac{a+2019}{b+2019}< \frac{a}{b}\)

T.Ps
26 tháng 6 2019 lúc 16:06

#)Chi tiết hơn nhé :

\(\frac{a}{b+2019}< \frac{a}{b}\)

\(\frac{2019}{b+2019}< \frac{a}{b}\)

\(\Rightarrow\frac{a}{b+2019}+\frac{2019}{b+2019}=\frac{a+2019}{b+2019}< \frac{a}{b}\)

Phạm Hoàng Nguyên
Xem chi tiết
đinh đức kiên
Xem chi tiết
Phạm Thùy Ngân
Xem chi tiết
Trịnh Ngọc Diệp
13 tháng 7 2019 lúc 13:47

Vì b > 0 => b + 2019 > 0

Ta có: \(\frac{a}{b}=\frac{a.\left(b+2019\right)}{b.\left(b+2019\right)}=\frac{a.b+a.2019}{b.\left(b+2019\right)}=\frac{a+2019}{b+2019}=\)

\(\frac{b.\left(a+2019\right)}{b.\left(b+2019\right)}=\frac{a.b+b.2019}{b.\left(b+2019\right)}\)

TH1: Nếu a < b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}< \frac{a.b+b.2019}{b.\left(b+2019\right)}\)

                       hay \(\frac{a}{b}< \frac{a+2019}{b+2019}\)

TH2: Nếu a = b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}=\frac{a.b+b.2019}{b.\left(b+2019\right)}\)

                       hay \(\frac{a}{b}=\frac{a+2019}{b+2019}\)

TH3: Nếu a > b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}>\frac{a.b+b.2019}{b.\left(b+2019\right)}\)

                       hay \(\frac{a}{b}=\frac{a+2019}{b+2019}\)

Huỳnh Quang Sang
13 tháng 7 2019 lúc 15:20

Xét tích : \(a(b+2019)=ab+2019a\)

\(b(a+2019)=ab+2019b\)

Vì b > 0 nên b + 2019 > 0

Nếu a > b thì \(ab+2019a>ab+2019b\)

\(a(b+2019)>b(a+2019)\)

\(\Rightarrow\frac{a}{b}>\frac{a+2019}{b+2019}\)

Nếu a < b thì \(ab+2019a< ab+2019b\)

\(a(b+2019)< b(a+2019)\)

\(\Rightarrow\frac{a}{b}< \frac{a+2019}{b+2019}\)

Nếu a = b thì rõ ràng \(\frac{a}{b}=\frac{a+2019}{b+2019}\)

nguyễn thị kim oanh
Xem chi tiết
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
TRẦN ĐỨC VINH
14 tháng 5 2019 lúc 16:19

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\) 

Với  :   \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\) 

Và   :   \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\) 

             \(B=1-\frac{1}{2020}< 1< A\)

Huỳnh Quang Sang
Xem chi tiết
Thanh Tùng DZ
22 tháng 5 2019 lúc 20:30

đặt 22018 = a ; 32019 = b ; 52020 = c

Ta có : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(2B=\frac{2}{1.2}+\frac{2}{3.4}+...+\frac{2}{2019.2020}\)

\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)

\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)

\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}=1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)

\(B< \frac{3}{4}\)

\(\Rightarrow A>1>\frac{3}{4}>B\)

Hoàng Minh Chi
22 tháng 5 2019 lúc 20:51

Mình chỉ biết cách tính B thôi, đây nhé:

B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)

B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2019}+\frac{1}{2020}\)

Nguyễn Đức Toàn
26 tháng 10 lúc 20:19

A>b

 

Hoàng Nghĩa Nhân
Xem chi tiết
Phạm Tuấn Đạt
28 tháng 12 2018 lúc 15:45

Có \(a\left(b+1\right)< b\left(a+1\right)\Leftrightarrow ab+a< ab+b\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng \(\frac{2^{2018}}{3^{2019}}< \frac{2^{2018}+1}{3^{2019}+1}\)

Nobita Kun
28 tháng 12 2018 lúc 15:51

Ta có:

\(1-\frac{a}{b}=\frac{b-a}{b}\)

\(1-\frac{a+1}{b+1}=\frac{b+1-a-1}{b+1}=\frac{b-a}{b+1}\)

Vì b < b + 1 và a < b; a, b nguyên dương  => b - a > 0 nên \(\frac{b-a}{b}>\frac{b-a}{b+1}\)

Do đó \(1-\frac{a}{b}>1-\frac{a+1}{b+1}\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng chứng minh tương tự nhé bạn

Xem chi tiết

B= 1/1.2+1/2.3+...+1/2019.2020

B=1/1-1/2+1/2-1/3+...+1/2019-1/2020

B=1-1/2020=2020/2020-1/2020=2019/2020