Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Linh Ngân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 8 2018 lúc 9:37

a,  3 n . 3 = 243 =>  3 n + 1 = 243 =>  3 n + 1 = 3 5

=> n + 1 = 5 => n = 4

Vậy n = 4

b,  4 3 . 2 n + 1 = 1

=>  2 2 3 . 2 n + 1 = 1

=>  2 2 . 3 . 2 n + 1 = 1 =>  2 6 . 2 n + 1 = 1

=>  2 6 + n + 1 = 1 =>  2 n + 7 = 2 0

=> n + 7 = 0

Không tìm được số tự nhiên n thỏa mãn đầu bài

c,  2 n - 15 = 17

=> 2 n = 32 =>  2 n = 2 5

=> n = 5

Vậy n = 5

d,  8 ≤ 2 n + 1 ≤ 64

=>  2 3 ≤ 2 n + 1 ≤ 2 6

=> 3 ≤ n + 1 và n+1 ≤ 6

=> 2 ≤ n và n ≤ 5

=> 2 ≤ n ≤ 5

Vậy 2n5

e,  9 < 3 n < 243

=>  3 2 < 3 n < 3 5

=> 2<n<5

Vậy 2<n<5

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 6 2017 lúc 4:40

Nguyễn Việt Bách
Xem chi tiết
Akai Haruma
9 tháng 9 2023 lúc 23:49

Lời giải:

Đặt tổng trên là $A$.

Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)

Xét $n\geq 2$. Khi đó:

$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$

$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$

Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.

Đặt $n=2k$ với $k$ nguyên dương.

Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý

Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.

 

Nguyễn Việt Bách
Xem chi tiết
Akai Haruma
10 tháng 9 2023 lúc 0:01

Nguyễn Thu Phương
Xem chi tiết
Nguyễn Thu Phương
Xem chi tiết
Nguyễn Thu Phương
Xem chi tiết
Nguyễn Bá Huy h
Xem chi tiết
Nguyễn Hải Minh
25 tháng 5 2021 lúc 11:05

Do 2n+1 là số chính phương lẻ nên 2n+1 : 8 dư 1

=> 2n chia hết cho 8

=> n chia hết cho 4

=> n chẵn

=> 3n chẵn

=> 3n+1 lẻ

=> 3n+1 chia 8 dư 1

=> 3n chia hết cho 8

=> n chia hết cho 8    (1)

Có: 3n+1 là số chính phương => 3n+1 chia 5 dư 0;1;4

=> 3n chia 5 dư 4;3 hoặc chia hết cho 5

=> n chia 5 dư 3;1 hoặc chia hết cho 5

- Xét n : 5 dư 3 => 2n+1 chia 5 dư 2 (Loại)

- Xét n : 5 dư 1 => 2n+1 chia 5 dư 3 (Loại)

- Xét n chia hết cho 5 => 2n+1 chia 5 dư 1 (Thỏa mãn)

=> n chia hết cho 5   (2)

Từ (1) và (2) suy ra n chia hết cho 40

Ta tìm được n=40 để 2n+1 và 3n+1 đều là số chính phương

P/s: Vậy n=40 chỉ là số nguyên dương nhỏ nhất thỏa mãn đề bài

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 9 2017 lúc 9:11

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;