Tính:
\(\left(92-\frac{1}{9}-\frac{2}{10}-\frac{3}{10}-.-\frac{92}{100}\right):\left(\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+.+\frac{1}{500}\right)\)
dấu\(.\)nghĩa là dấu 3 chấm nhé! ai xong và đúng sẽ có tích.
Tính : \(\left(92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}\right)\) \(\div\left(\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}\right)\)
Cho M = \(\frac{\left(\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)}\);
N = \(\frac{\left(92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}\right)}{\left(\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}\right)}\)
Tìm tỉ số phần trăm của M và N
Ta có :
M = \(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{91}+1\right)+...+\left(\frac{98}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(100\)
N = \(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)
N = \(40\)
\(\Rightarrow\)M : N = \(\frac{100}{40}\%=250\%\)
\(M=\frac{1+(\frac{1}{99}+1)+(\frac{2}{98}+1)+(\frac{3}{97}+1)+...+(\frac{98}{2}+1)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(M=\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(M=\frac{100\cdot(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2})}{(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100})}=100\)
\(N=\frac{(1-\frac{1}{9})+(1-\frac{2}{10})+(1-\frac{3}{11})+...+(1-\frac{92}{100})}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
\(N=\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}=\frac{8(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100})}{\frac{1}{5}(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100})}=40\)
\(M:N=\frac{100}{40}=250\%\)
Bài 1: Tính nhanh
1) \(\left(1-\frac{1}{5}\right)\left(1-\frac{2}{5}\right)...\left(1-\frac{9}{5}\right)\)
2) \(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
3)\(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{1999}}{\frac{1}{1.1999}+\frac{1}{3.1997}+...+\frac{1}{1997.3}+\frac{1}{1999.1}}\)
Tính:\(B=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-.....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}}\)
\(B=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
\(=\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+....+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)(có 92 số 1)
\(=\frac{\frac{8}{9}+\frac{8}{10}+....+\frac{8}{100}}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}=\frac{8\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}\)
\(=8:\frac{1}{5}=40\)
\(B\)\(=\)\(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}....+\frac{1}{500}}\)
Tham khảo bài làm bn Đàm đi
Hok tốt
câu 1: tính giá trị biểu thức A=\(\frac{1}{7}\left(\frac{555}{222}+\frac{4444}{12221}+\frac{33333}{244442}+\frac{11}{330}+\frac{13}{60}\right)\)
câu 2 :Cho E=92-\(\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}\) và F =\(\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}\) .Tính\(\frac{E}{F}\)
Xin lỗi, mình chỉ làm được câu 1 thôi
\(A=\frac{1}{7}\left(\frac{555}{222}+\frac{4444}{12221}+\frac{33333}{244442}+\frac{11}{330}+\frac{13}{60}\right)\)
\(A=\frac{1}{7}\left(\frac{5.111}{2.111}+\frac{4.1111}{11.1111}+\frac{3.11111}{22.11111}+\frac{11}{11.30}+\frac{13}{60}\right)\)
\(A=\frac{1}{7}\left(\frac{5}{2}+\frac{4}{11}+\frac{3}{22}+\frac{1}{30}+\frac{13}{60}\right)\)
\(A=\frac{1}{7}\left[\left(\frac{5}{2 }+\frac{1}{30}+\frac{13}{60}\right)+\left(\frac{4}{11}+\frac{3}{22}\right)\right]\)
\(A=\frac{1}{7}\left[\left(\frac{150}{60}+\frac{2}{60}+\frac{13}{60}\right)+\left(\frac{8}{22}+\frac{3}{22}\right)\right]\)
\(A=\frac{1}{7}\left(\frac{11}{4}+\frac{1}{2}\right)\)
\(A=\frac{1}{7}.\frac{13}{4}\)
\(A=\frac{13}{21}\)
\(A=\frac{1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+......+\frac{1}{999}}{\frac{1}{1.999}+\frac{1}{3.997}+\frac{1}{5.995}+......+\frac{1}{999.1}}\)
\(B=\frac{1+\left(1+2\right)+\left(1+2+3\right)+\left(1+2+3+4\right)+......+\left(1+2+3+...+98\right)}{1.2+2.3+3.4+4.5+......+98.99}\)
\(C=\frac{\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+......+\frac{1}{100.400}}{\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+......+\frac{1}{299.400}}\)
\(D=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+......+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{100}}:\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{97}-......-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+......+\frac{1}{500}}\)
Giup tui voi !!!!!!!!!!!!!!!!!!!!!!!!!!! Mai phai nop roi !!!!!!!!!!!!!!!!!!!
Tính N=\(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
Tử số:
\(92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}\)
= \(\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)\)
= \(\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}\)
= \(8\times\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)\)
Mẫu số:
\(\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}\)
= \(\frac{1}{5\times9}+\frac{1}{5\times10}+\frac{1}{5\times11}+...+\frac{1}{5\times100}\)
= \(\frac{1}{5}\times\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)\)
\(\Rightarrow\frac{8\times\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}\times\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)
Bỏ biểu thức \(\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)\)ở trên và ở dưới (vì biểu thức đó đều có ở trên và ở dưới nên phải gạch bỏ)
\(\Leftrightarrow\frac{8}{\frac{1}{5}}\)= \(8\div\frac{1}{5}=40\)
Vậy N = 40.
Tính:
\(A=3-\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
Công thức:
\(A=3-\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\) nha bạn TF Boys
Tính :
\(A=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)