Tìm x,y,z : biết x,y,z tỉ lệ nghịch với 3,5,7 và 2x-y+3z=68
Tìm, x ,y z biết:
a) x,y,z tỉ lệ nghịch với 3,5,7 và 2x-y+3z=188
b) \( \frac{2x-3}{5}= \frac{3y+2}{7}=\frac{z-1}{3}\) và 4x-6y+7z=68
a, \(3x=5y=7z\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}\)
\(\Rightarrow\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}\)
Áp dụng t/c
\(\Rightarrow\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}=\frac{2x-y+3z}{\frac{2}{3}-\frac{1}{5}+\frac{3}{7}}=\frac{188}{\frac{105}{94}}=210\)
\(\frac{x}{\frac{1}{3}}=210\Rightarrow x=70\)
\(\frac{y}{\frac{1}{5}}=210\Rightarrow y=42\)
\(\frac{z}{\frac{1}{7}}=210\Rightarrow z=30\)
bài 1/ tìm x,y. biết x,y tỉ lệ nghịch với 4,6 và 2x-5y=20
bài 2/ tìm x,y,z. biết x,y,z tỉ lệ nghịch với 2,4,5 với x+y+z=38
tìm x y z biết
a, x,y tỉ lệ nghịch với 3,5 và x+y=40
b x,y,z tỉ lệ nghịch với 6,10,15 và x+y+z=90
c x,y,z tỉ lệ nghịch với 2,3,4 và 3x - 2y+ 5z= 69
a, Ta có : 3x = 5y => \(\dfrac{x}{5}=\dfrac{y}{3}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\Rightarrow x=25;y=15\)
b, Ta có : \(6x=10y=15z\Rightarrow\dfrac{6x}{30}=\dfrac{10y}{30}=\dfrac{15z}{30}\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y+z}{5+3+2}=\dfrac{90}{10}=9\Rightarrow x=45;y=27;z=18\)
c, tương tự b
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{40}{8}=5\)
Do đó: x=15; y=25
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{15}}=\dfrac{x+y+z}{\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}}=\dfrac{90}{\dfrac{1}{3}}=270\)
Do đó: x=45; y=27; z=18
Tìm 3 số x,y,z biết : x và y tỉ lệ thuận với 4,7 . y và z tỉ lệ nghịch 5 và 3 và 2x - y + z = 114
x , y TLT với 4 , 7
=> x/4 = y/7 =>x/12 = y/21 (1)
y , z TLN với 5 , 3
=> y.5=z.3
=> y/3=z/5 =>y/21 = z/35 (2)
Từ 1 và 2 => x/12 =y/21 =z/35 = 2x/24
Áp dụng tính chất …
x/12 =y/21 =z/35 = 2x/24 = 2z-y+z/24-21+35 = 114/38=3
=> x=36 ; y=63 ; z=105
Tìm x, y, z biết 2x + 3y + 4z = -54; x và y tỉ lệ nghịch với 5 và 3; y và z tỉ lệ thuận với 10 và 3.
Tìm x ;y ;z biết x;y;z lần lượt tỉ lệ với 4 ;6;8 và 2x+y-3z =20
Ta có: \(\frac{x}{4}=\frac{y}{6}=\frac{z}{8}\) => \(\frac{2x}{8}=\frac{y}{6}=\frac{3z}{24}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{8}=\frac{y}{6}=\frac{3z}{24}=\frac{2x+y-3z}{8+6-24}=\frac{20}{-10}=-2\)
=> \(\hept{\begin{cases}\frac{x}{4}=-2\\\frac{y}{6}=-2\\\frac{z}{8}=-2\end{cases}}\) => \(\hept{\begin{cases}x=-2.4=-8\\y=-2.6=-12\\z=-2.8=-16\end{cases}}\)
Vậy ...
Tìm x,y,z, biết:
x và y tỉ lệ nghịch với 6 và 5, y và z tỉ lệ nghịch với 4 và 3; biết x+y+z = 38
x và y tỉ lệ nghịch với 6 và 5
nên 6x=5y
=>x/5=y/6
y và z tỉ lệ nghịch với 4 và 3
nên 4y=3z
=>y/3=z/4
=>x/5=y/6=z/8=(x+y+z)/(5+6+8)=38/19=2
=>x=10; y=12; z=16
3)Cho biết y tỉ lệ nghịch với x theo hệ số tỉ lệ 0.8 và x tỉ lệ với z theo hệ số tỉ lệ 0,5.Hãy chứng tỏ y tỉ lệ thuận với z và tìm hệ số tỉ lệ
4)Cho biết y tỉ lệ nghịch với x theo hệ số tỉ lệ 3 và x tỉ lệ nghịch với z theo hệ số tỉ lệ 1/3 hãy chứng tỏ rằng y tỉ lệ nghịch với z và tìm hệ số tỉ lệ
3)
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8 nên xy=0,8 (1)
x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5 nên xz=0,5 (2)
Từ (1) và (2) suy ra xy/xz=0,8*0,5 hay y/z=0,4 suy ra y=0,4*z
Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ là 0,4
a) Tìm 3 số x,y,z biết x:y:z=2:4:6 va 3x-y+z=24
b) Tim 3 số x,y,z biết x,y,z tỉ lệ nghịch 6,10,4 và x+2y-3z=115
a) Theo đề bài, ta có:
\(x:y:z=2:4:6\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)và \(3x-y+z=24\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{3x-y+z}{2.3-4+6}=\frac{24}{8}=3\)
\(.\frac{x}{2}=3\Rightarrow x=3.2=6\)
\(.\frac{y}{4}=3\Rightarrow y=3.4=12\)
\(.\frac{z}{6}=3\Rightarrow z=3.6=18\)
Vậy\(x,y,z\) lần lượt là: \(6,12,18\)
b) Vì x, y, z tỉ lệ nghịch với 6, 10, 4 nên ta có:
\(6x=10y=4z\Rightarrow\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{4}}\)
Theo tính chất của dãy tỉ số bằng nhua, ta có:
\(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{4}}=\frac{x+2y-3z}{\frac{1}{6}+2.\frac{1}{10}-3.\frac{1}{4}}=\frac{115}{\frac{-23}{60}}=-300\)
\(.\frac{x}{\frac{1}{6}}=-300\Rightarrow x=-300.\frac{1}{6}=-50\)
\(.\frac{y}{\frac{1}{10}}=-300\Rightarrow y=-300.\frac{1}{10}=-30\)
\(.\frac{z}{\frac{1}{4}}=-300\Rightarrow z=-300.\frac{1}{4}=-75\)
Vậy x, y, z lần lượt là: -50; -30; -75
Ta có:
EQ\F(x,6)=EQ\F(y,10)=EQ\F(z,4)
x+2y-3z=115
Áp dụng tính chất của dãy tỉ số bằng nhau
EQ\F(x,6)=EQ\F(y,10)=EQ\F(z,4)=EQ\F(x+2y-3z,6+20-12)=EQ\F(115,14)
EQ\F(x,6)=EQ\F(115,14)=>x=EQ\F(345,7)
EQ\F(y,10)=EQ\F(115,14)=>y=EQ\F(575,7)
EQ\F(z,4)=EQ\F(115,14)=>z=EQ\F(230,7)
Vậy x=EQ\F(345,7)
y=EQ\F(575,7)
z=EQ\F(230,7)