Cho \(A=\frac{n+1}{n-2}\)
Tìm \(n\in Z\)để A là số nguyên
1.
A : Tìm X biết :\(2.|X+1|-3=5\)
B : Tìm \(n\in z\) để \(A=\frac{n+1}{n-2}(n\ne2)\)
2.
Cho biểu thức \(A=\frac{2}{n-1}(n\in z)\).Tìm tất cả các giá trị nguyên của n để A là số nguyên
Bài 1
2.|x+1|-3=5
2.|x+1| =8
|x+1| =4
=>x+1=4 hoặc x+1=-4
<=>x= 3 hoặc -5
Bài 3
A=2/n-1
Để A có giá trị nguyên thì n là
2 phải chia hết cho n-1
U(2)={1,2,-1,-2}
Vậy A là số nguyên khi n=2;3;0;-1
k mk nha. Chúc bạn học giỏi
Thank you
bài 1 :
\(2\cdot|x+1|-3=5\)
\(2\cdot|x+1|=5+3\)
\(2\cdot|x+1|=8\)
\(|x+1|=8\div2\)
\(|x+1|=4\)
\(x=4-3\)
\(x=3\Rightarrow|x|=3\)
bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)
TH1:
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)
\(\Rightarrow n=5\)
TH2
\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)
\(\Rightarrow4=\frac{4-1}{1+2}=3\)
\(\Rightarrow n=3\)
\(n\in\left\{5;3\right\}\left(n\in Z\right)\)
Bài 3 có 2 trường hợp là \(A=1\)và \(A=2\)
TH1:
\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)
\(1=\frac{2}{2+1}=3\)
\(\Rightarrow n=3\)
TH2 :
\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)
\(2=\frac{2}{1+1}=2\)
\(\Rightarrow n=2\)
vậy \(\Rightarrow n\in\left\{3;2\right\}\)
Cho biểu thức \(A=\frac{2}{n-1}\left(n\in Z\right)\)
a,Số nguyên n phải có điều kiện gì để A là phân số?
b,Tìm tất cả các giá trị nguyên của n để A là số nguyên
\(\text{( \frac{67}{11} + \frac{2}{33} − \frac{15}{117} ) . ( \frac{1}{3} − \frac{1}{4}− \frac{1}{12})}\)Cho biểu thức A = \(\frac{5}{n-1};\left(n\in z\right)\)
Tìm điều kiện của n để A là phân số
Tìm tất cả giá trị nguyên của n để A là số nguyên
Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)
Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)
\(n-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(2\) | \(0\) | \(6\) | \(-4\) |
Cho phân số A=\(\frac{n+1}{n-2}\)
a)Tìm số nguyên n để A có giá trị nguyên
b)Tìm n\(\in\)Z để A đạt GTLN và GTNN
....
a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên
b) Ko hiểu
***
A=n+1n−2
a. để B là phân số thì n-2 khác 0 => n khác 2
b.A=n+1n−2= n−2+3n−2= n−2n−2+3n−2=1+3n−2
để B nguyên khi n-2 là ước của 3
ta có ước 3= (-1;1;3;-3)
nên n-2=1=> n=3
n-2=-1=> n=1
n-2=3=> n=5
n-2=-3=> n=-1
vậy để A nguyên thì n=(-1;1;3;5)
a) Để A có giá trị nguyên thì: \(n+1⋮n-2\)
\(\Rightarrow n+1-\left(n-2\right)⋮n-2\)
\(\Rightarrow3⋮n-2\Rightarrow n-2\inƯ\left(3\right)\)
Mà Ư(3) = {-1;-3;1;3}
\(\Rightarrow n-2\in\left\{-1;-3;1;3\right\}\)
\(\Rightarrow n\in\left\{1;-1;3;5\right\}\)
b) Ta có : \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
* Để A lớn nhất thì \(\frac{3}{n-2}ln\)
TH1: n - 2 lớn nhất thì 3/n-2 bé nhất
TH2: n - 2 bé nhất thì 3/n-2 lớn nhất.
=> n - 2 = 1 => n = 3
* Để A bé nhất thì \(\frac{3}{n-2}nn\)
TH1: n - 2 lớn nhất thì 3/n-2 bé nhất
TH2: n - 2 bé nhất thì 3/n-2 lớn nhất.
=> n - 2 = 3 => n = 5
Cho biểu thức \(A=\frac{n-4}{n-3}\left(n\in Z\right)\)
a. Số nguyên n phải có điều kiện gì để biểu thức A là phân số?
b. Tìm số nguyên n để A là số nguyên
c. Cho n > -3. Tìm Min của A
a.dk: n thuoc Z, n-4 chia het cho n-3
ket ban nha!
a, \(A=\frac{n-4}{n-3}\) là phân số <=> \(n-3\ne0\)
<=> \(n\ne3\)
b, \(A=\frac{n-4}{n-3}\inℤ\Leftrightarrow n-4⋮n-3\)
\(\Rightarrow n-4⋮n-3\)
\(\Rightarrow n-3-1⋮n-3\)
\(n-3⋮n-3\)
\(\Rightarrow1⋮n-3\)
\(\Rightarrow n-3\inƯ\left(1\right)\)
\(\Rightarrow n-3\in\left\{-1;1\right\}\)
\(\Rightarrow n-3\in\left\{2;4\right\}\)
c, \(A=\frac{n-4}{n-3}=\frac{n-3-1}{n-3}=\frac{n-3}{n-3}-\frac{1}{n-3}=1-\frac{1}{n-3}\)
để A đạt giá trị nỏ nhất thì \(\frac{1}{n-3}\) lớn nhất
=> n - 3 là số nguyên dương nhỏ nhất
=> n - 3 = 1
=> n = 4
Cho 2 phân số : M = \(\frac{3n+1}{4}\) ; N = \(\frac{18}{n+1}\)
a. Tìm n thuộc Z để M là hợp số ; N là số nguyên tố
b. Tìm n thuộc Z để M.N là số nguyên dương
c. Tìm n thuộc Z để M.N = -4\(\frac{1}{2}\)
Bài 1:Cho A=\(\frac{4}{\left(n-2\right).\left(n+1\right)}\),\(n\in Z\)
a)Với \(n\in Z\)nào thì A không tồn tại
b)Viết tập hợp M các số nguyên n để A tồn tại
c) Tìm phân số A, biết n=2, n=0, n=11
d)Tìm \(n\in Z\) để A=\(\frac{1}{7}\)
a) 2 hoặc -1
b)M={-3;-2;0;1;3;4;5}
Cho A=\(\frac{2n}{n-2}\)(n\(\in\)Z ,n\(\ne\)0).Tìm số nguyên n để A là giá trị nguyên
Ta có: \(A=\frac{2n}{n-2}\Rightarrow n>0\)
Lập luận
+ n lớn hơn không vì nếu n nhỏ hơn 0 thì \(\frac{2n}{n-2}\)sẽ trở thành \(\frac{2\left(-n\right)}{n-2}\) (vô lý)
=> n thuộc tập N*
Cho A =\(\frac{4n+1}{2n+3}\)(n\(\in\)Z)
a. Tìm n để A là số nguyên
b.Tìm n để A lớn nhất
c. Tìm n để A bé nhất
Để A là số nguyên thì 4n + 1 chia hết cho 2n + 3
<=> 4n + 1 chai hết cho 4n + 6
=> 4n + 6 - 5 chia hết 4n + 6
=>5 chia hết 4n + 6
=> 4n + 6 thuôc Ư(5) = {-1;1;-5;5}
Ta có bảng
4n + 6 | -5 | -1 | 1 | 5 |
4n | -11 | -7 | -5 | 11 |
n | -1 |