Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
băng
Xem chi tiết
Phan Thị Mỹ Quyên
25 tháng 4 2018 lúc 20:53

Bài 1

2.|x+1|-3=5

2.|x+1|   =8

|x+1|     =4

=>x+1=4 hoặc x+1=-4

<=>x= 3 hoặc -5

Bài 3

     A=2/n-1

Để A có giá trị nguyên thì n là

2 phải chia hết cho n-1

U(2)={1,2,-1,-2}

Vậy A là số nguyên khi n=2;3;0;-1

k mk nha. Chúc bạn học giỏi

Thank you

Trần Cao Vỹ Lượng
25 tháng 4 2018 lúc 20:59

bài 1 :

\(2\cdot|x+1|-3=5\)

\(2\cdot|x+1|=5+3\)

\(2\cdot|x+1|=8\)

\(|x+1|=8\div2\)

\(|x+1|=4\)

\(x=4-3\)

\(x=3\Rightarrow|x|=3\)

bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)

TH1:

 \(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)

\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)

\(\Rightarrow n=5\)

TH2

\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)

\(\Rightarrow4=\frac{4-1}{1+2}=3\)

\(\Rightarrow n=3\)

\(n\in\left\{5;3\right\}\left(n\in Z\right)\)

Bài 3  có 2 trường hợp là \(A=1\)và \(A=2\)

TH1:

\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)

\(1=\frac{2}{2+1}=3\)

\(\Rightarrow n=3\)

TH2 : 

\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)

\(2=\frac{2}{1+1}=2\)

\(\Rightarrow n=2\)

vậy \(\Rightarrow n\in\left\{3;2\right\}\)

Hoàng Văn Dũng
Xem chi tiết
hankhanhlinh13
Xem chi tiết
Huỳnh Quang Sang
5 tháng 5 2019 lúc 19:16

Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)

Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)

\(n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(2\)\(0\)\(6\)\(-4\)
Trình Nguyễn Quang Duy
Xem chi tiết
KhảTâm
5 tháng 6 2019 lúc 7:46

....

a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên

b) Ko hiểu

***

A=n+1n2n+1n−2

a. để B là phân số thì n-2 khác 0 => n khác 2

b.A=n+1n2n+1n−2n2+3n2n−2+3n−2n2n2n−2n−2+3n23n−2=1+3n23n−2

để B nguyên khi n-2 là ước của 3

ta có ước 3= (-1;1;3;-3)

nên n-2=1=> n=3

n-2=-1=> n=1

n-2=3=> n=5

n-2=-3=> n=-1

vậy để A nguyên thì n=(-1;1;3;5)

Song Ngư (๖ۣۜO๖ۣۜX๖ۣۜA)
5 tháng 6 2019 lúc 7:59

a) Để A có giá trị nguyên thì: \(n+1⋮n-2\)

\(\Rightarrow n+1-\left(n-2\right)⋮n-2\)

\(\Rightarrow3⋮n-2\Rightarrow n-2\inƯ\left(3\right)\)

Mà Ư(3) = {-1;-3;1;3}

 \(\Rightarrow n-2\in\left\{-1;-3;1;3\right\}\)

\(\Rightarrow n\in\left\{1;-1;3;5\right\}\)

b) Ta có : \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)

* Để A lớn nhất thì \(\frac{3}{n-2}ln\)

 TH1: n - 2 lớn nhất thì 3/n-2 bé nhất

 TH2: n - 2 bé nhất thì 3/n-2 lớn nhất.

          => n - 2 = 1 => n = 3

 * Để A bé nhất thì \(\frac{3}{n-2}nn\)

  TH1: n - 2 lớn nhất thì 3/n-2 bé nhất

  TH2: n - 2 bé nhất thì 3/n-2 lớn nhất.

        => n - 2 = 3 => n = 5

Trần Xuân Mai
Xem chi tiết
nguyen yen nhi
31 tháng 8 2016 lúc 11:28

a.dk: n thuoc Z, n-4 chia het cho n-3

ket ban nha!

Nguyễn Phương Uyên
23 tháng 5 2018 lúc 17:07

a, \(A=\frac{n-4}{n-3}\) là phân số <=> \(n-3\ne0\)

                                                <=>  \(n\ne3\)

b, \(A=\frac{n-4}{n-3}\inℤ\Leftrightarrow n-4⋮n-3\)

\(\Rightarrow n-4⋮n-3\)

\(\Rightarrow n-3-1⋮n-3\)

     \(n-3⋮n-3\)

\(\Rightarrow1⋮n-3\)

\(\Rightarrow n-3\inƯ\left(1\right)\)

\(\Rightarrow n-3\in\left\{-1;1\right\}\)

\(\Rightarrow n-3\in\left\{2;4\right\}\)

c, \(A=\frac{n-4}{n-3}=\frac{n-3-1}{n-3}=\frac{n-3}{n-3}-\frac{1}{n-3}=1-\frac{1}{n-3}\)

để A đạt giá trị nỏ nhất thì \(\frac{1}{n-3}\) lớn nhất

=> n - 3 là số nguyên dương nhỏ nhất

=> n - 3 = 1

=> n = 4

Huyền Hana
Xem chi tiết
Trương Tiến Duy
Xem chi tiết
Nguyễn Tiến Quốc Trường
4 tháng 3 2018 lúc 22:33

a) 2 hoặc -1

b)M={-3;-2;0;1;3;4;5}

nguyen tuong vy
Xem chi tiết
tth_new
13 tháng 2 2018 lúc 18:33

Ta có: \(A=\frac{2n}{n-2}\Rightarrow n>0\)

 Lập luận

+ n lớn hơn không vì nếu n nhỏ hơn 0 thì \(\frac{2n}{n-2}\)sẽ trở thành \(\frac{2\left(-n\right)}{n-2}\) (vô lý)

=> n thuộc tập N*

Nguyễn Mai Anh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
26 tháng 2 2017 lúc 17:06

Để A là số nguyên thì 4n + 1 chia hết cho 2n + 3

<=> 4n + 1 chai hết cho 4n + 6

=> 4n + 6 - 5 chia hết 4n + 6

=>5 chia hết 4n + 6

=> 4n + 6 thuôc Ư(5) = {-1;1;-5;5}

Ta có bảng

4n + 6-5-115
4n-11-7-511
n  -1