Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Gia Ngọc
Xem chi tiết
Nguyễn Thị Gia Ngọc
Xem chi tiết
Ngô Phương
17 tháng 4 2015 lúc 22:15

\(\frac{1}{2}A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\) 

\(\frac{1}{2}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(\frac{1}{2}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(\frac{1}{2}A=1-\frac{1}{10}\)

\(\frac{1}{2}A=\frac{9}{10}\)

\(A=\frac{9}{10}:\frac{1}{2}\)

\(A=\frac{18}{10}=\frac{9}{5}\)

Light angel
18 tháng 6 2016 lúc 10:37

sao thế tự dưng lấy 1/12 ở đâu thế 1/10 cơ mà

we are one_kakashi
Xem chi tiết
we are one_kakashi
18 tháng 2 2017 lúc 11:11

Gọi biểu thức là A, ta có:

A = \(\frac{12}{1.4.7}+\frac{12}{4.7.10}+\frac{12}{7.10.13}+...+\frac{12}{54.57.60}=2\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+\frac{6}{7.10.13}+...+\frac{6}{54.57.60}\right)\)

A = \(2\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}-\frac{1}{10.13}+...+\frac{1}{54.57}-\frac{1}{57.60}\right)\)

A = \(2\left(\frac{1}{1.4}-\frac{1}{57.60}\right)=2\left(\frac{427}{1710}\right)=\frac{427}{855}< \frac{427}{854}=\frac{1}{2}\)

Vậy A < \(\frac{1}{2}\)(điều cần chứng minh)

Tên tôi là Thành
Xem chi tiết
nguyễn thị kiều anh
Xem chi tiết
Nguyễn Linh Chi
26 tháng 7 2019 lúc 15:02

Câu hỏi của thục hà - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

Kiệt Nguyễn
26 tháng 7 2019 lúc 15:05

Đề sai hả

\(P=\frac{12}{1.4.7}+\frac{12}{4.7.10}+...+\frac{12}{54.57.60}\)

\(\Rightarrow\frac{1}{2}P=\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}\)

\(\Rightarrow\frac{1}{2}P=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}\)

\(\Rightarrow\frac{1}{2}P=\frac{1}{1.4}-\frac{1}{57.60}< \frac{1}{4}\)

\(\Rightarrow P< \frac{1}{4}.2=\frac{1}{2}\)

Cá Chép Nhỏ
26 tháng 7 2019 lúc 15:10

\(P=\frac{12}{1.4.7}+\frac{12}{4.7.10}+...+\frac{12}{54.57.60}\)

\(=2\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}\right)\)

\(=2\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}\right)\)

\(=2\left(\frac{1}{4}-\frac{1}{3420}\right)\)

\(=2\left(\frac{855-1}{3420}\right)\)

\(=2.\frac{427}{1710}=\frac{427}{855}\)

Mà \(\frac{1}{2}=\frac{427}{854}\)

=> \(\frac{427}{855}< \frac{427}{854}\)=> P < \(\frac{1}{2}\)

Vi Đinh
Xem chi tiết
Thiên Yết
2 tháng 3 2017 lúc 20:52

\(P=\frac{12}{1.4.7}+\frac{12}{4.7.10}+\frac{12}{7.10.13}+...+\frac{12}{54.57.60}\)

\(P=4.\left(\frac{3}{1.4.7}+\frac{3}{4.7.10}+\frac{3}{7.10.13}+...+\frac{3}{54.57.60}\right)\)

\(P=4\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}\right)\)

\(P=4.\left(\frac{1}{4}-\frac{1}{3420}\right)\)

\(P=4.\frac{427}{1710}\)

\(P=\frac{854}{855}\)

Đinh Diễm Quỳnh
Xem chi tiết
mai quang huy
12 tháng 3 2016 lúc 10:33

nhớ nhiều nhé

duyệt đi mà nhanh lên sốt ruột quá

Miki Thảo
Xem chi tiết
Minh Triều
15 tháng 7 2015 lúc 9:35

\(A=\frac{1}{1.4.7}+\frac{1}{4.7.10}+...+\frac{1}{54.57.60}\)

\(\Rightarrow6A=\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}\)

\(=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.47}-\frac{1}{57.60}\)

\(=\frac{1}{4}-\frac{1}{3420}=\frac{855}{3420}-\frac{1}{3420}=\frac{427}{1710}\)

\(\Rightarrow A=\frac{427}{1710}:6=\frac{427}{1710}.\frac{1}{6}=\frac{427}{10260}\)

Trần Đức Thắng
15 tháng 7 2015 lúc 9:36

Nhận thấy: 

\(\frac{6}{1.4.7}=\frac{1}{1.4}-\frac{1}{4.7}\)

...............

\(\frac{6}{54.57.60}=\frac{1}{54.57}-\frac{1}{57.60}\)

=> ta phải nhân A vói 6 

=> 6A = 

\(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}=\frac{1}{4}-\frac{1}{57.60}=\frac{427}{1710}\)

=> A = 427/1710 : 6 =427/10260

Soái Tỉ
Xem chi tiết
Nguyễn Ngọc Anh Minh
26 tháng 12 2016 lúc 9:05

Đặt \(\frac{12}{1.4.7}+\frac{12}{4.7.10}+...+\frac{12}{54.57.60}=A\)

\(\frac{A}{2}=\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}\)

\(\frac{A}{2}=\frac{7-1}{1.4.7}+\frac{10-4}{4.7.10}+...+\frac{60-54}{54.57.60}\)

\(\frac{A}{2}=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}=\frac{1}{1.4}-\frac{1}{57.60}\)

\(A=\frac{1}{2}-\frac{1}{30.57}< \frac{1}{2}\)