cho tma giác abc vuông ở a, trung tuyến am, kẻ ah vuông góc bc. Hạ he vuông góc ac, he cắt am tại n. CM: bn vuông góc am
B1 :Cho tam giác ABC có 2 đường cao BD,CE. Gọi M,N là trung điểm của BC,DE. C/m MN vuông góc DE.
B2: Cho tam giác ABC cân tại A. H là trung điểm của BC. Kẻ HE vuông góc AC. Gọi I là trung điểm của HE. C/m AI vuông góc BE
B3: Cho tam giác ABC vuông tại A. M là trung điểm của BC. Đường cao AH. Kẻ HE vuông góc AC cắt AM tại N. C/m AM vuông góc BN
1) Cho tam giác ABC vuông tại A , AH là đường cao , AM là trung tuyến. Kẻ HD vuông góc với AB , HE vuông góc với AC , MK vuông góc với AB. Gọi N là giao điểm của AM và HE
C/m : a) AM vuông góc với DE
b) BN//DE
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHElà hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
b: HE//AB
=>HN//AB
mà góc NAB=góc HBA
nên NHBA là hình thang cân
=>góc ANB=góc AHB=90 độ
=>BN vuông góc với AM
=>BN//DE
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Kẻ HE và HD lần lượt vuông góc với AB,AC. Kẻ MK vuông góc AB. N là giao điểm của AM và HE
C/m:
a) AM vuông góc DE
b) BN//DE
c) MK,BN,AH đồng quy
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHElà hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
b: HE//AB
=>HN//AB
mà góc NAB=góc HBA
nên NHBA là hình thang cân
=>góc ANB=góc AHB=90 độ
=>BN vuông góc với AM
=>BN//DE
c: Xét ΔMAB có AH,BN.MK là các đường cao
nên AH,BN,MK đồng quy
Cho tam giác ABC vuông tại A, có AB=6cm, BC=10cm.
a)Kẻ đường cao AH, kẻ HD vuông góc AB, HE vuông góc AC. Chứng minh HD.AB+HE.AC=AH.BC
b) Kẻ trung tuyến AM. Chứng minh AM vuông góc DE
c)Tính AH
Cho tam giác ABC, trung tuyến AM, đường cao AH. Kẻ HE và HD lần lượt vuông góc với AB,AC. Kẻ MK vuông góc với AB. Gọi N là giao điểm của AM và HD. Cm:
a) AM vuông góc với DE
b) BN//DE
c) MK, BN,AH đồng quy
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHElà hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
b: HE//AB
=>HN//AB
mà góc NAB=góc HBA
nên NHBA là hình thang cân
=>góc ANB=góc AHB=90 độ
=>BN vuông góc với AM
=>BN//DE
c: Xét ΔMAB có AH,BN.MK là các đường cao
nên AH,BN,MK đồng quy
cho tam giac abc vuông tại a, ah vuông góc bc, trung tuyến am. kẻ hd vuông góc ab, he vuông góc ac. CMR : AM vuông góc với DE
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Kẻ HD vuông góc AB, kẻ HE vuông góc AC. CHỨNG MINH : AM VUÔNG GÓC DE
cho tam giác ABC vuông tại A có AB= 3cm, AC=4cm đường cao AH , trung tuyến AM (H,M thuộc BC)
a, tình BC,AM
b, HD vuông góc AB, HE vuông góc AC cm tứ giác AEHD là hình chữ nhật
c, cm AM vuông góc DE
Cho tam giác ABC vuông tại A, có đường cao AH và dường trung tuyến AM; AB=6,AC=8. Từ H kẻ HD vuông góc AB, HE vuông góc AC.
a.cm:AD.AB=AE.AC
b. Cm AM vuông góc DE