Cho tam giác ABC vuông tại A. Đường cao AH cắt đường phân giác BD tại I (H thuộc BC, D thuộc AC). Chứng minh rằng:
a, IA.IH = IH.BA
b, AB2 = BH.BC
c, \(\frac{IH}{IA}\) = \(\frac{DA}{DC}\)
Cho ΔABC vuông tại A có AB = 6cm, BC = 10cm và đường cao AH
a) Chứng minh: ΔABH ᔕ ΔCBA và AB2 = BH.BC
b) Tính AC, AH
c) Tia phân giác của \(\widehat{ABC}\) cắt AH, AC lần lượt tại I và D. Chứng minh: \(\dfrac{IH}{IA}\) = \(\dfrac{DA}{DC}\)
d) Tính SABI
Cho tam giác ABC vuông tại A có AB = 6cm , AC = 8 cm , đường cao Ah và phân giác BD cắt nhau tại I ( H thuộc BC và D thuộc AC )
a, tính dộ dài AD, DC
B, chứng minh tam giác ABI đồng dạng với tam giác CBD
c, chứng minh \(\frac{IH}{IA}=\frac{AD}{DC}\)
a) Áp dụng định lý pitago vào tam giác vuông ABC ( gt )
⇒Bc=10(cm)⇒Bc=10(cm)
Tacó: DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3.DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3⇒DC/8=58⇒DC=8.58=5(cm)⇒DC/8=5/8⇒DC=8.5/8=5(cm)
⇒AD=AC−DC=8−5=3(cm)
Cho tam giác ABC vuông tại A, đường cao AH ( H thuộc BC ) và phân giác BE của ABC ( E thuộc AC ) cắt nhau tại I. Chứng minh rằng:
a) IH.AB=IA.BH
b)AB^2=BH.BC
c) IH/IA=AE/EC
a) Vì \(\Delta ABC\) vuông tại A (giả thiết).
\(\Rightarrow AB^2+AC^2=BC^2\)(định lí Py-ta-go).
\(\Rightarrow6^2+8^2=BC^2\)(thay số).
\(\Rightarrow BC^2=36+64=100\)
\(\Rightarrow BC=10\left(cm\right)\)(vì \(BC>0\)).
Xét \(\Delta ABC\)có phân giác BD (giả thiết).
\(\Rightarrow\frac{AD}{CD}=\frac{AB}{CB}\)(tính chất).
\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{CB+AB}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+BA}\)
\(\Rightarrow\frac{AD}{8}=\frac{6}{6+10}=\frac{6}{16}=\frac{3}{8}\)(thay số).
\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)
Do đó \(CD=AC-AD=8-3=5\left(cm\right)\)
Vậy \(AD=3\left(cm\right),CD=5\left(cm\right)\)
b) Xét \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{ABC}\)chung.
\(\widehat{BAC}=\widehat{BHA}\left(=90^0\right)\)
\(\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)\)(điều phải chứng minh).
cho tam giác ABC vuông tại A.Đường cao AH cắt đường phân giác BD tại I. chứng minh rằng
a,IA.BH=IH.BA
b,IA=ID
c,\(\frac{HI}{IA}=\frac{AD}{DC}\)
Cho tam giác ABC vuông tại A, AH là đường cao, Biết AB=12cm, AC=16cm
a) Tính BC
b) Chứng minh Tam giác ABC đồng dạng với tam giác HBA. Từ đó suy ra AB2 = BC.BH
c) Đường phân giác BD cắt AH tại I (D thuộc AC. Chứng minh IH/AI = AD/DC
mình đang gấp giúp mình với
a)Tính BC:
\(\Delta ABC\)vuông tại A nên:
BC2=AB2+AC2
BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt[]{12^2+16^2}\)=20 (cm)
b) Xét \(\Delta vuôngABC\)và\(\Delta VuôngHBA\)có:
\(\widehat{B}\):chung
Do đó \(\Delta ABC\)đồng dạng \(\Delta HBA\)(góc nhọn)
Vì \(\Delta ABC\)đồng dạng \(\Delta HBA\)
=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=> AB.AB = BC.BH =>AB2 = BC.BH
c) Vì \(\Delta ABC\) đồng dạng \(\Delta HBA\) nên:
\(\frac{BA}{BC}=\frac{BH}{BA}\) (1)
Mặt khác: Do BD là đường phân giác của \(\Delta ABC\)nên:
\(\frac{AD}{DC}=\frac{BA}{BC}\)( T/c đường phân giác trong tam giác) (2)
Vì BI là đường phân giác của \(\Delta HBA\) nên:
\(\frac{IH}{AI}=\frac{BH}{BA}\)( T/c đường phân giác trong tam giác) (3)
Từ (1), (2), (3) Suy ra \(\frac{IH}{AI}=\frac{AD}{DC}\) (T/c bắc cầu)
Cho ∆ABC vuông tại A, đường cao AH.
a) Chứng minh ∆ABC đồng dạng với ∆HBA, từ đó suy ra AB2 = BH.BC.
b) Tia phân giác của góc ABC cắt AH tại I. Chứng minh rằng: IA/IH=AC/HA
c) Tia phân giác của góc HAC cắt BC tại K. Chứng minh IK song song với AC.
em nào có nhu cầu bú lồn thì liên hệ anh nha
BÀI 1 CHO TAM GIÁC ABC VUÔNG TẠI A ĐƯỜNG CAO AH CẮT ĐƯỜNG PHÂN GIÁC BD TẠI I CHỨNG MINH RẰNG
a) AI.BH=IH.BA
b) TAM GIÁC ABC ĐỒNG DẠNG VỚI TAM GIÁC HBA
c) \(\frac{HI}{IA}=\frac{AD}{DC}\)
BÀI 2 CHO TAM GIÁC ABC VUÔNG TẠI A AB=15CM AC=20CM KẺ ĐƯỜNG CAO AH a) CHỨNG MINH TAM GIÁC ABC ĐỒNG DẠNG VỚI TAM GIÁC HBA TỪ ĐÓ SUY RA \(AB^2\)= BC. BH b) TÍNH BH VÀ CH
cho tam giác ABC vuông tại A có AB=6 cm, AC=8cm. đường cao AH và phân giác BD cắt nhau tại I (H thuộc BC và D thuộc AC)
a) tính độ dài AD?DC?
b) cmr: tam giác ABC đồng dạg với tam giác HBA=> AB2= BH.BC
c) cmr: tam giác ABI đồng dạng với tam giác CBD
d) cmr: IH/IA=AD/DC