cho các số a,b,c thỏa mãn:\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}\)
tính giá trị biểu thức P=\(\frac{a+b-2019c}{a+b+2018c}\)
Cho các số a,b,c thỏa mãn: \(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}\). Tính giá trị biểu thức \(P=\frac{a+b-2019c}{a+b+2018c}\)
Bạn tham khảo nè
https://olm.vn/hoi-dap/detail/221248297106.html
Học tốt
\(\text{Cho các số a,b,c thỏa mãn:}\)
\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}\text{(Giả thiết các tỉ số đều có nghĩa)}\)
\(\text{Tính giá trị biểu thức:}\)
\(P=\frac{3a+3b+2019c}{a+b-2020c}\)
https://olm.vn/hoi-dap/detail/221248297106.html
tham khảo nhé
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}=\frac{3+2+1}{a+b+b+c+c+a}=\frac{6}{2\left(a+b+c\right)}=\frac{3}{a+b+c}\)
\(\rightarrow a+b=a+b+c\) \(\rightarrow c=0\)
\(\Rightarrow P=\frac{3a+3b+2019c}{a+b-2020c}=\frac{3\left(a+b\right)+2019\cdot0}{a+b-2020\cdot0}=\frac{3\left(a+b\right)}{a+b}=3\)
a, cho các số a,b,c thỏa mãn 3/a+b = 2 /b+c = 1 / c+ (giả thuyết các tỉ số đều có nghĩa ) Tính giá trị biếu thức P = a + b - 2019c/ a + b + 2018c
b, Cho ab,ac ( c khác 0 ) là các số thỏa mãn điều kiện ab/a+b = bc / b+c
\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)
Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)
Cho các số a, b, c thỏa mãn điều kiện\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
Tính giá trị biểu thức:\(P=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
Các cao nhân giúp với!!!!!!!!!! Thanks for all
Ta có:\(a+b+c\ne0\)vì nếu \(a+b+c=0\)thế vào giả thiết ta có:
\(\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=1\Leftrightarrow-3=1\)(vô lí)
Khi \(a+b+c\ne0\)ta có:
\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right).\left(a+b+c\right)=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{a.\left(b+c\right)}{b+c}+\frac{b.\left(c+a\right)}{c+a}+\frac{b^2}{c+a}+\frac{c.\left(a+b\right)}{a+b}+\frac{c^2}{a+b}=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)\(\Rightarrow P=0\)
Học tốt
\(P=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(< =>P=a\left(\frac{a}{b+c}+1-1\right)+b\left(\frac{b}{a+c}+1-1\right)+c\left(\frac{c}{a+b}+1-1\right)\)
\(< =>P=a\left(\frac{a+b+c}{b+c}-1\right)+b
\left(\frac{a+b+c}{a+c}-1\right)+c\left(\frac{a+b+c}{a+b}-1\right)\)
\(< =>P=\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{a+c}+\frac{c\left(a+b+c\right)}{a+b}-\left(a+b+c\right)\)
\(< = >P=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)
\(< =>P=a+b+c-a-b-c=0\)
A, Cho 3 số a;b;c thỏa mãn \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)và 3a+2b-c khác 0 . Tính giá trị của biểu thức: \(B=\frac{a+7b-2c}{3a+2b-c}\)
B, Cho 3 số a;b;c thỏa mãn \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)và 3a+2b-c=4 . Tìm các số a;b;c
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
cho ba số a,b,c thỏa mãn a+b+c =6 và \(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=\frac{3}{2}\).Tính giá trị của biểu thức \(P=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c=a}\)
Ta có :
\(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=\frac{3}{2}\)
\(\Leftrightarrow\frac{c}{a+b}+1+\frac{b}{a+c}+1+\frac{a}{b+c}+1=\frac{3}{2}+3\)
\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}=\frac{9}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{9}{2}\)
\(\Leftrightarrow6.\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{9}{2}\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{9}{2}:6=\frac{3}{4}\)
Vậy \(P=\frac{3}{4}\)
Cho 4 số a,b,c,d thỏa mãn \(\frac{a}{6}=\frac{b}{4}=\frac{c}{2}=\frac{d}{b+8}\) và a+b+c+d đạt giá trị nhỏ nhất.
Tính A=7a+b+2019c+2020d
Cho 4 số a,b,c,d thỏa mãn \(\frac{a}{6}=\frac{b}{4}=\frac{c}{2}=\frac{d}{b+8}\) và a,b,c,d đạt giá trị nhỏ nhất.Tính A=7a+b+2019c+2020d
Cho ba số a,b,c khác 0 thỏa mãn: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\) .
Tính giá trị của biểu thức \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)