Tính giá trị biểu thức:
B= 9/ 1. 2- 9/ 2. 3- 9/ 3. 4..... - 9/ 98. 99- 9/ 99. 100
Tính giá trị biểu thức:
A = 1-3+5-7+9-11+13-15+...+97-99+101
B=1-2-3-4+5-6-7-8+9-10-11-12+...+97-98-99-100
Tính giá trị biểu thức:
A=1+2-3-4+5+6--7-8+9+10-11-12+.....+97+98-99-100
A= 1+(2-3)+(5-4)+...+(98-99)-100
=1-1+1-1+...+1-1-100
=-100
Tính giá trị biểu thức
A=1-2-3-4+5-6-7-8+9-10-11-12+............+97-98-99-100
Tính giá trị biểu thức
C = 1 - 2 - 3 - 4 + 5 - 6 - 7 - 8 + 9 - 10 - 11 - 12 + ... + 97 - 98 - 99 - 100
Ta có: C=1 - 2 - 3 - 4 + 5 - 6 - 7 - 8 + 9 - 10 - 11 - 12 +... + 97 - 98 - 99 - 100
C= ( 1 - 2 - 3 - 4 ) + ( 5 - 6 - 7 - 8 ) + ( 9 - 10 - 11 - 12 ) + ... + ( 97 - 98 - 99 - 100 )
C= - 8 + - 16 + -24 + ... + -200
C= - ( 8 + 16 + 24 +... + 200 )
C= - \(\frac{\left(8+200\right).25}{2}\)= - 2600
nhớ ấn đúng cho mình nhé!
C=1-2-3-4+5-6-7-8+9-10-11-12+...+97-98-99-100
C=(1-2-3-4)+(5-6-7-8)+(9-10-11-12)+...+(97-98-99-100)
C=(-8)+(-16)+(-24)+...+(-200) Vì khoảng cánh mỗi số hạng là 8 =>Số các số hạng là:(200-8):8+1=25(số hạng)
C=-(200+8)x25:2
C=-2600
Tính giá trị biểu thức;
A=1+2-3-4+5+6-7-8+9+10-11-12....+97+98-99-100
Tính giá trị biểu thức :
C = 1 / 3 - 3 / 5 + 5/7 - 7/ 9 + 9 /11 - 11 / 13 + 13 / 15 + 11/ 13 - 9 /11 + 7 / 9
D = 1/99 - 1 /99 x 98 - 1 / 98 x 97 - 1 /97 x 96 - ........ - 1 / 3x 2 - 1/ 2 x 1
A=9/1×2+9/2×3+....+9/98×99+9/99×100. Tính A
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(A=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9\times\frac{99}{100}\)
\(A=\frac{891}{100}\) hoặc 8,91
\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
A=\(9.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9.\left(1-\frac{1}{100}\right)=\frac{891}{100}\)
A = 9/1*2+9/2*3+9/3*4+...+9/98*99+9/99*100
A=9/1.2+9/2.3+9/3.4+.....+9/98.99+9/99.100
=9.(1/1.2+1/2.3+1/3.4+....+1/98.99+1/99.100
=9.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100)
=9.(1/1-1/100)
=9.99/100
=891/100
CHÚC BẠN HỌC TỐT!
\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9.\left(1-\frac{1}{100}\right)\)
\(=9.\frac{99}{100}\)
\(=\frac{891}{100}\)
A=9/1.2+9/2.3+9/3.4+.....+9/98.99+9/99.100
=9.(1/1.2+1/2.3+1/3.4+....+1/98.99+1/99.100
=9.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100)
=9.(1/1-1/100)
=9.99/100
=891/100
Cho A=9/1×2+9/2×3+9/3×4+...+9/98×99+9/99×100
Giải:
\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)
\(\Leftrightarrow A=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(\Leftrightarrow A=9\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=9\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=9.\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{891}{100}\)
Vậy ...