chứng tỏ rằng phân số n+2 phần n +3 là ps tối giản
chứng tỏ rằng nếu P/s 7n2+1/6 là số tự nhiên với n thuộc N thì các PS n/2 và n/3 là PS tối giản
chứng tỏ rằng 3n+2 phần 5n+3 là phân số tối giản [với n thuộc n]
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
chứng tỏ rằng ps 5n+3/3n+2
là ps tối giản với n thuộc N
De \(\frac{5n+3}{3n+2}\)la phan so toi gian (n thuoc N)
thi 5n+3 chia het 3n+2
suy ra 3n+2 chia het 3n+2 suy ra 15n+10 chia het 3n+2
va 5n+3 chia het 3n+2 suy ra 15n+9 chia het 3n+2
suy ra ( 15n+10 - 15n+9 ) chia het 3n+2
suy ra 1 chia het 3n+2
suy ra 3n+2 thuoc uoc cua 1 la 1 ,-1
vi n thuoc N nen 3n+2=1
suy ra 3n=1-2
suy ra n=-1/3( loai)
vay x thuoc rong
Chứng tỏ rằng phân số sau là ps tối giản
n^3 + 2n / n^4 +3n^2 +1
2n +1 / 3n +1
AI nhanh nhất được thưởng 3 like
mình pt làm câu sau thôi:
đặt UCLN của (2n+1, 3n+1) d
=> 2n+1 chia hết cho d và 3n+1 chia hết cho d
=> 6n+3 chia hết cho d và 6n+2 chia hết cho d
=> 1chia hết cho d và d=1
bài tương tự nha bn
Chứng tỏ rằng : phân số 15n+1/30n+1 là phân số tối giản với n thuộc N?
gọi d là ƯC(15n+1;30n+1)
=>2.(15n+1) chia hết cho d và 30n+1 chia hết cho d
=>2.(15n+1)=30n+2
=>(30n+2)-(30n+1) cũng sẽ chia hết cho d
1 chia hết cho d
=> d=1
từ đó bạn sẽ biết thế nao chứ.
Chứng tỏ rằng mọi phân số dạng 2n+1 phần n+3 (n thuộc N) đều là phân số tối giản.
Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được
a) với a là số nguyên nào thì ps a/74 là tối giản
b) với b là số nguyên nào thì ps b/225 là tối giản
c) chứng tỏ rằng 3n/3n+1 ( n thuộc N ) là ps tối giản
Chứng tỏ rằng ps có dạng : 2a+3/a+2 là phân số tối giản.
Cần gấp tối nay
Gọi \(d=ƯCLN\left(2a+3;a+2\right)\)
\(\Leftrightarrow\hept{\begin{cases}2a+3⋮d\\a+2⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a+3⋮d\\2a+4⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(2a+3;a+2\right)=1\)
\(\Leftrightarrow\frac{2a+3}{a+2}\) là phân số tối giản
a) Chứng tỏ rằng phân số n+1 phần n+2, n thuộc N là phân số tối giản
b) Tìm số nguyên n đễ P = n+3 phần n- 2 là số nguyên
a) Gọi ƯCLN ( n + 1 ; n + 2 ) = d
Khi đó \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d}\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy phân số \(\frac{n+1}{n+2}\)là p/s tối giản
b) Ta có :
\(P=\frac{n+3}{n-2}=\frac{\left(n-2\right)+5}{n-2}=1+\frac{5}{n-2}\)
Để P có giá trị là số nguyên
\(\Rightarrow\frac{5}{n-2}\text{phải có giá trị nguyên }\)
\(\Rightarrow5⋮n-2\)
\(\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Với n - 2 = 1 => n = 3
Với n - 2 = -1 => n = 1
Với n - 2 = 5 => n = 7
Với n - 2 = -5 => n = -3
Vậy : n \(\in\left\{3;1;7;-3\right\}\)
a)Gọi UCLN của n+1 và n+2 là d
=>n+1 chia hết cho d, n+2 chia hết cho d
=>(n+2)-(n+1)=1 chia hết cho d
=>d=1
=>dpcm
b)Để n+3 phần n-2 là số nguyên thì n+3 chia hết cho n-2
Mà n-2 chia hết cho n-2
=>(n+3)-(n-2) chia hết cho n-2
=>5 chia hết cho n-2
=>n-2 thuộc ước của5
=>n-2 thuộc {1;-1;5;-5}
=>n thuộc {3;1;7;-3}
Chứng tỏ rằng với mọi số tự nhiên n thì phân số n+2 phần 2n+3 tối giản
Đặt \(\left(n+2,2n+3\right)=d\)
Suy ra \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow2\left(n+2\right)-\left(2n+3\right)=1⋮d\Rightarrow d=1\).
Suy ra đpcm.