tìm x biết x-1/2018+x-3/2019 = x-3/2017
tìm x biết
x-1/2019+x-2/2018+x-3/2017=3
tìm x biết
x-1/2019+x-2/2018+x-3/2017=3
\(\dfrac{x-1}{2019}+\dfrac{x-2}{2018}+\dfrac{x-3}{2017}=3\)
\(\Leftrightarrow\left(\dfrac{x-1}{2019}-1\right)+\left(\dfrac{x-2}{2018}-1\right)+\left(\dfrac{x-3}{2017}-1\right)=0\)
\(\Leftrightarrow\dfrac{x-1-2019}{2019}+\dfrac{x-2-2018}{2018}+\dfrac{x-3-2017}{2017}=0\)
\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}+\dfrac{x-2020}{2017}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)=0\)
Vi \(\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\ne0\)
nên \(x-2020=0\)
\(\Leftrightarrow x=2020\)
Vậy ...
tìm x biết x-1/2018+x-3/2019 = x-33/2017
tìm x biết: x+1/2019+x+2/2018+x+3/2017=x-1/2021+x-2/2022+x-3/2023
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)
\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)
Vì \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)
=> x + 2020 = 0
=> x = -2020
Bài làm :
Ta có :
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)
\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)
\(\text{Vì : }\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)
\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy x=-2020
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)
\(\Leftrightarrow\frac{x+1+2019}{2019}+\frac{x+2+2018}{2018}+\frac{x+3+2017}{2017}=\frac{x-1+2021}{2021}+\frac{x-2+2022}{2022}+\frac{x-3+2023}{2023}\)\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
Tìm x biết :
[1/2 + 1/3 + .......+ 1/2019]x = 2018/1 + 2017/2 + .......+ 1/2018
Tìm X biết:
X+1/2020 + X+2/2019 +X+3/2018 +X+4/2017 =-4
\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}+\frac{x+4}{2017}=-4\)
=> \(\left[\frac{x+1}{2020}+1\right]+\left[\frac{x+2}{2019}+1\right]+\left[\frac{x+3}{2018}+1\right]+\left[\frac{x+4}{2017}+1\right]=-4\)
=> \(\left[\frac{x+1}{2020}+\frac{2020}{2020}\right]+\left[\frac{x+2}{2019}+\frac{2019}{2019}\right]+\left[\frac{x+3}{2018}+\frac{2018}{2018}\right]+\left[\frac{x+4}{2017}+\frac{2017}{2017}\right]=-4\)
=> \(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}+\frac{x+2021}{2017}=-4\)
=> \(\left[x+2021\right]\left[\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\right]=-4\)
Do \(\frac{1}{2020}>\frac{1}{2019}>\frac{1}{2018}>\frac{1}{2017}\)nên \(\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\ne0\)
Do đó : x + 2021 = -4 => x = -4 - 2021 = -2025
a.1/3 x 2019/2020
b. 2017 x 2018/2019 x 2019/2018
tìm x biết :
x+4/2017 + x+3/2018 = x+2/2019 + x+1/2020
(x+4)/2017 + (x+3)/2018 = (x+2)/2019 + (x+1)/2020
=> (x+4)/2017 + 1 + (x+3)/2018 + 1 = (x + 2)/2019 + 1 + (x + 1)/2020 + 1
=> (x+2021)/2017 + (x + 2021)/2018 = (x+2021)/2019 + (x+2021)/2020
=> (x+2021)(1/2017 + 1/2018) = (x + 2021)(1/2019+1/2020)
mà 1/2017 + 1/2018 khác 1/2019 + 1/2020
=> x + 2021 = 0
=> x = -2021
\(\frac{x+4}{2017}+\frac{x+3}{2018}=\frac{x+2}{2019}+\frac{x+1}{2020}\)
\(\left(\frac{x+4}{2017}+1\right)+\left(\frac{x+3}{2018}+1\right)=\left(\frac{x+2}{2019}+1\right)+\left(\frac{x+1}{2020}+1\right)\)
\(\frac{x+4+2017}{2017}+\frac{x+3+2018}{2018}=\frac{x+2+2019}{2019}+\frac{x+1+2020}{2020}\)
\(\frac{x+2021}{2017}+\frac{x+2021}{2018}=\frac{x+2021}{2019}+\frac{x+2021}{2020}\)
\(\frac{x+2021}{2017}+\frac{x+2021}{2018}-\frac{x+2021}{2019}-\frac{x+2021}{2020}=0\)
\(\left(x-2021\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Vì \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\)
\(\Rightarrow x-2021=0\)
Vậy \(x=2021\)
ko ghi lại đề
=>x+2021=0
x=-2021
hc tốt
Tìm x biết
a)x/2+x/3+x/4+x/5=0
b)x+1/2019 + x+2/2018 = x+3/2017 + x+4/2016
a) \(\frac{x}{2}+\frac{x}{3}+\frac{x}{4}+\frac{x}{5}=0\)
\(\frac{77x}{60}=0\)
\(77x=0.60\)
\(77x=0\)
\(x=0\)
\(\frac{a+1}{2019}+\frac{a+2}{2018}=\frac{a+3}{2017}+\frac{a+4}{2016}\Leftrightarrow\frac{a+2020}{2019}+\frac{a+2020}{2018}=\frac{a+2020}{2017}+\frac{a+2020}{2016}\)
\(\left(a+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\Rightarrow a+2020=0\Leftrightarrow a=-2020\)