Cho A =2+2^2+2^3+...+2^60. Chứng minh rằng A chia hết cho 7 ?
Chứng minh rằng:
a, M = 8^8 + 2^20 chia hết cho 7
b, A = 10^28 + 8 chia hết cho 72
c, T = 2 + 2^2 + 2^3 + … + 2^60 chia hết cho 3, 7, 15
cho A= 2+22+23+...+260 . chứng minh rằng: A chia hết cho 3, chia hết cho 7, chia hết cho 15.
A=2+2^2+2^3+...+2^60
=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2(1+2)+2^3(1+2)+...+2^59(1+2)
=3(2+2^3+...+2^59) chia hết cho 3
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+...+2^58(1+2+2^2)
=7(2+...+2^58) chia hết cho 7
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
=15(2+...+2^57) chia hết cho 15
a) Chứng minh rằng nếu (ab+cd+eg) chia hết cho 11 thì abcdeg chia hết cho 11
b) Cho A= 2+22+23+...+260 . Chứng minh A chia hết cho 3; 7; 15
a) Ta có: \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)
\(=\overline{ab}.999+\overline{cd}.99+\overline{ab}+\overline{cd}+\overline{eg}\)
\(=\left(\overline{ab}.999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì \(\left(\overline{ab}.999+\overline{cd}.99\right)⋮11\)
và \(\left(\overline{ab}+\overline{cd}+\overline{cd}\right)⋮11\left(gt\right)\)
\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)
b) \(\cdot A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+...+\left(2^{50}+2^{60}\right)\)
\(A=2.3+...+2^{50}.3\)
\(A=3\left(2+..+2^{50}\right)⋮3\)
các trường hợp còn lại tự lm nhé!!
Cho A= 2+ 2^2 + 2^3+...+ 2^60 Chứng minh rằng A chia hết cho 7; 11; 13
Nhóm các số hạng sao cho có tổng là 7; 11; 13 rồi dễ dàng làm được.
câu hỏi này đã được trả lời ở câu hỏi tương tự do bạn gửi
Cho A= 2+ 2^2 + 2^3+...+ 2^60 Chứng minh rằng A chia hết cho 7; 11; 13
Nhóm các số hạng sao cho có tổng là 7; 11; 13 rồi dễ dàng làm được.
nhé !
Cho A= 2+ 2^2 + 2^3+...+ 2^60 Chứng minh rằng A chia hết cho 7; 11; 13
A= 2+ 2^2 + 2^3+...+ 2^60
A=(2+2^2+2^3)+(2^4+2^5+2^6).....+(2^58+2^59+2^60)
A=2 x (1+2+2^2)+2^4 x (1+2+2^2)+.....+2^58 x (1+2+2^2)
A=2 x 7 + 2^4 x 7.... +2^58 x 7
Vì mỗi số hạng đều chia hết cho 7 =) A chia hết cho 7
mấy bài kia tương tự hen
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào
Bài 1 :
Cho A = 13 + \(13^2+13^3+13^4+13^5+13^6.\) Chứng minh rằng A \(\)chia hết cho 2 .
Bài 2 :
Cho C = \(2+2^2+2^3+.....+2^{2011}+2^{2012}\). Chứng minh rằng C chia hết cho 3 .
Bài 3 :
Chứng minh rằng : A = \(2^1+2^2+2^3+.....+2^{59}+2^{60}\)chia hết cho 7
Bài 4 :
Cho A = \(7+7^3+7^5+....+7^{1999}\) . Chứng minh rằng A chia hết cho 35
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
Bài 1:Chứng minh rằng :
a) 10^28+8 chia hết cho 72
b)8^8+2^20 chia hết cho17
Bài 2 :Cho :
a)A = 2+2^2+2^3+.........+2^60
chứng minh rằng Achia hết cho 3; 7; 15
a)$10^{28}$1028 chia 9 dư 1
8 chia 9 dư 8
1 + 8 = 9 chia hết cho 9
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 9 (1)
$10^{28}$1028 chia hết cho 8 (vì có 3 chữ số tận cùng là 000 chia hết cho 8)
8 chia hết cho 8
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 8 (2)
Từ (1) và (2) kết hợp với ƯCLN (8,9) = 1 . Suy ra $10^{28}+8$1028+8 chia hết cho 72
b)$8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\times\left(2^4+1\right)=2^{20}\times17$88+220=(23)8+220=224+220=220×(24+1)=220×17 chia hết cho 17
Cho A=7+7^2+7^3+....+7^60. Chứng minh rằng A chia hết cho 8
A=7+72+73+...+760
A=(7+72)+(73+74)+(75+76)+...+(759+760)
A= 7(1+7)+73(1+7)+75(1+7)+...+759(1+7)
A= 7.8+73.8+75.8+...+759.8
A= 8(7+73+75+...+759)
vì 8(7+73+75+...+759) ⋮ 8 ⇒ A ⋮ 8