cho các số x,y,z thỏa mãn 1/x +1/y+1/z=2 và 2/xy -1/z^2 =4 tính giá trị p=(x+2y+z)^2019
Cho các số x,y,z thõa mãn đồng thời \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) và \(\frac{2}{xy}-\frac{1}{z^2}=4\). Tính giá trị của biểu thức P = (x + 2y + z)2019
=56 phân số bất đồng trị của a+b
chắc câu này a đăng lên cho vui :vv
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2< =>\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=2^2=4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\left(\frac{2}{xy}-\frac{1}{z^2}\right)+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}+4=4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xy}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4-4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{zx}=0\)
\(< =>\left(\frac{1}{x^2}+\frac{2}{zx}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(< =>\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0< =>\frac{1}{x}=\frac{1}{y}=-\frac{1}{z}\)
\(< =>x=y=-z\)Thế vào giả thiết ta được : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(< =>\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2< =>\frac{-1}{z}+\frac{-1}{z}+\frac{1}{z}=2\)
\(< =>\frac{-1-1+1}{z}=2< =>2z=-1< =>z=-\frac{1}{2}\)
Suy ra \(x=y=-z=-\left(-\frac{1}{2}\right)=\frac{1}{2}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Nên \(P=\left(x+2y+z\right)^{2019}=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2019}=1^{2019}=1\)
\(ĐK:x,y,z\ne0\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)ta được \(\hept{\begin{cases}a+b+c=2\\2ab-c^2=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2-c\\2ab=4+c^2\end{cases}}\)
Do đó a, b là các nghiệm của phương trình: \(t^2-\left(2-c\right)t+\frac{4+c^2}{2}=0\)
Ta có:\(\Delta=\left(c-2\right)^2-4.\frac{4+c^2}{2}=c^2-4c+4-8-2c^2=-\left(c+2\right)^2\)
Để phương trình có nghiệm thì \(\Delta\ge0\)mà \(-\left(c+2\right)^2\le0\)nên \(-\left(c+2\right)^2=0\Rightarrow c=-2\Rightarrow a=b=2\)
Do đó hệ có nghiệm \(\left(x,y,z\right)=\left(\frac{1}{2};\frac{1}{2};\frac{-1}{2}\right)\)
Thay vào biểu thức, ta được: \(P=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2019}=1^{2019}=1\)
1)cho 2 số x,y thỏa mãn xy+x+y=7 và x^2y +xy^2= 10
tính giá trị biểu thức A= x^3 +y^3
2)tìm bộ 3 x,y,z thỏa mãn:
x-y-z+3=0 và x^2-y^2-z^2 =1
các bạn làm giúp m nha!!!
cho x+1/x=a. Tính x^7+1/x^7 theo a
Cho x, y, z khác 0 thỏa mãn đồng thời 1/x +1/y + 1/z =2 và 2/xy - 1/z^2 = 4 Tính giá trị của biểu thức p=(x+2y+z)^2018
Bài 1 :
Ta có :
\(x^7+\frac{1}{x^7}=\left(x^3+\frac{1}{x^3}\right)\left(x^4+\frac{1}{x^4}\right)-\left(x+\frac{1}{x}\right)\)
\(\left(x+\frac{1}{x}\right)=a\Leftrightarrow\left(x+\frac{1}{x}\right)^2=a^2\)
\(\Leftrightarrow x^2+\frac{1}{x^2}+2.x.\frac{1}{x}=a^2\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-x.\frac{1}{x}+\frac{1}{x^2}\right)\)
\(=a\left(x^2+\frac{1}{x^2}-1\right)=a\left(a^2-3\right)\)
\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2.x^2.\frac{1}{x^2}\)
\(=\left(a^2-2\right)^2-2=a^4-4a^2+4-2\)
\(=a^4-4a^2+2\)
\(\Rightarrow x^7+\frac{1}{x^7}=a.\left(a^2-3\right).\left(a^4-4a^2+2\right)-a\)
\(=\left(a^3-3a\right)\left(a^4-4a^2+2\right)-a\)
\(=a^7-4a^5+2a^3-3a^5+12a^3-6a-a\)
\(=a^7-7a^5+14a^3-7a\)
Bài 2 :
Ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=2^2\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=\frac{2}{xy}-\frac{1}{z^2}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{z^2}+\frac{2}{yz}+\frac{2}{zx}=0\)
\(\Rightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)
\(\Rightarrow\frac{1}{x}+\frac{1}{z}=\frac{1}{y}+\frac{1}{z}=0\) vì \(\left(\frac{1}{x}+\frac{1}{z}\right)^2,\left(\frac{1}{y}+\frac{1}{z}\right)^2\ge0\)
\(\Rightarrow x=y=-z\)
\(\Rightarrow\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2\Rightarrow-\frac{1}{z}=2\Rightarrow z=-\frac{1}{2}\)
\(\Rightarrow x=y=\frac{1}{2}\)
\(\Rightarrow x+2y+z=\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}=1\)
\(\Rightarrow P=1\)
Chi x y z khác 0 thỏa mãn
1/x+1/y+1/z=2 và 1/xy+1/z^2=4
Tính giá trị biểu thức A=(x+2y-z)_2017
Cho các số x,y,z khác 0 thỏa mãn đồng thời \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=2 và \(\frac{2}{xy}\)-\(\frac{1}{z^2}\)=4.
Tính giá trị biểu thức: P=\(\left(x+2y+z\right)^{2019}\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)
Khai triển cả 2 vế ta được \(\left(\frac{1}{y}+\frac{1}{z}\right)^2+\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)
=>\(\hept{\begin{cases}\frac{1}{y}+\frac{1}{z}=0\\\frac{1}{x}+\frac{1}{z}=0\end{cases}}\)=>\(\frac{1}{x}=\frac{1}{y}\Rightarrow x=y\)
=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{z}=2\Rightarrow\frac{4}{x^2}+\frac{4}{xz}+\frac{1}{z^2}=4\)(1)
\(\frac{2}{xy}-\frac{1}{z^2}=\frac{2}{x^2}-\frac{1}{z^2}=4\)(2)
Từ (1) và (2) suy ra
\(\frac{2}{x^2}+\frac{4}{xz}+\frac{2}{z^2}=0\Rightarrow\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}=0\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)\(\Rightarrow\frac{1}{x}+\frac{1}{z}=0\Rightarrow x=y=-z\)
=> \(P=\left(x+2y+z\right)^{2019}=\left(2y\right)^{2019}\)
à thêm cái này nữa. Sorry viết thiếu
Vì x=y=-z\(\Rightarrow\frac{2}{x}-\frac{1}{x}=2\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}.\)
lúc đó \(P=\left(2.\frac{1}{2}\right)^{2019}=1\)
Cho các số thực x, y, z thỏa mãn đồng thời các điều kiện sau x + y + z = 2, x^2 + y^2 z^2 = 18 và xyz = -1. Tính giá trị của S = 1/(xy + z - 1) + 1/(yz + x -1) + 1/(zx + y -1)
Cho x ,y ,z thỏa mãn 1/ x + 1/y + 1/z = 2 và 2 / xy - 1/ z^2 = 4 . Tính A = ( x+ 2y + z ) ^ 2012
Cho các số x,y,z thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) và \(\frac{2}{xy}-\frac{1}{z^2}=4\)
Tính giá trị của biểu thức:
\(C=\left(x+2y+z\right)^{2021}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}=\frac{2}{xy}-\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}-\frac{2}{xy}+\frac{1}{z^2}=0\)
\(\Leftrightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{z}=0\\\frac{1}{y}+\frac{1}{z}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{1}{x}=\frac{1}{-z}\\\frac{1}{y}=\frac{1}{-z}\end{cases}\Leftrightarrow}\frac{1}{x}=\frac{1}{y}=\frac{1}{-z}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Leftrightarrow\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2\)
\(\Leftrightarrow z=\frac{-1}{2}\)
\(x=y=\frac{1}{2}\)
\(\Rightarrow C=\left(x+2y+z\right)^{2021}=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2021}=1^{2021}=1\)
Ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}-\frac{2}{xy}+\frac{1}{z^2}=0\)
\(\Leftrightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\\\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=-\frac{1}{z}\\\frac{1}{y}=-\frac{1}{z}\end{cases}}}\)
\(\Leftrightarrow x=y=-z\)
Thay vào \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)ta được :
\(x=y=\frac{1}{2};z=-\frac{1}{2}\)
\(\Rightarrow P=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2021}=1^{2020}=1\)
cho các số x,y,z thỏa mãn 1/x +1/y+1/z=2 và 2/xy -1/z^2 =4 tính giá trị p=(x+2y+z)^2019
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=\frac{2}{xy}-\frac{1}{z^2}\)
\(\Leftrightarrow\left(\frac{1}{x^2}+\frac{2}{zx}+\frac{1}{z^2}\right)+\left(\frac{1}{z^2}+\frac{2}{yz}+\frac{1}{y^2}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)
Hai số hạng đều không âm nên ta được:
\(\left\{{}\begin{matrix}\frac{1}{x}=-\frac{1}{z}\\\frac{1}{y}=-\frac{1}{z}\end{matrix}\right.\Leftrightarrow x=y=-z\)
Thay vào phương trình đầu:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\Leftrightarrow\frac{1}{x}+\frac{1}{x}-\frac{1}{x}=2\Leftrightarrow\frac{1}{x}=2\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2};z=-\frac{1}{2}\)