Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Km123 San Mine
Xem chi tiết
Bui Huyen
24 tháng 4 2019 lúc 21:44

\(\sqrt{x+3}+\sqrt{x-3}=\sqrt{11}\\ \Rightarrow2x+2\sqrt{x^2-9}=11\\ \Rightarrow\sqrt{2x+2\sqrt{x^2-9}}=\sqrt{11}\left(x>3\right)\)

Tram Nguyen
Xem chi tiết
Rev
Xem chi tiết
Hoàng Như Quỳnh
15 tháng 7 2021 lúc 14:36

\(\sqrt{2x+2\sqrt{x^2-4}}\)

\(\sqrt{x-2+2\sqrt{x-2}\sqrt{x+2}+x+2}\)\(\)

\(\sqrt{\left(\sqrt{x-2}+\sqrt{x+2}\right)^2}\)

\(\left|\sqrt{x-2}\right|+\left|\sqrt{x+2}\right|\)

\(\sqrt{x-2}+\sqrt{x+2}\)

\(=\sqrt{7}\)

Khách vãng lai đã xóa
Nhi Đào Quỳnh
Xem chi tiết
Không Tên
25 tháng 2 2020 lúc 16:56

1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)

Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.

Khách vãng lai đã xóa
Nguyễn Thị Phương Thảo
Xem chi tiết
Là con gái thật tuyệt
2 tháng 2 2017 lúc 21:11

\(a,\hept{\begin{cases}x+y=3\\x-2y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-y\\3-y-2y=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\-3y=4\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-\left(-\frac{4}{3}\right)\\y=-\frac{4}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{3}\\y=-\frac{4}{3}\end{cases}}}\)

\(b,\hept{\begin{cases}2x+y=5\\4x+2y=11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\left(1\right)\\4x+2y=11\left(2\right)\end{cases}}\)

Lấy ( 1 ) trừ ( 2 ) Ta được 0x + 0y = - 1 

=> hệ pt vô nghiệm 

\(c,\hept{\begin{cases}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}.\left(\sqrt{2}-\sqrt{3}y\right)-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2-\sqrt{6}y-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\left(\sqrt{6}+\sqrt{3}\right)y=-1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\sqrt{3}.\frac{1}{\sqrt{6}+\sqrt{3}}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{3}}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=1\end{cases}}\)

binn2011
Xem chi tiết
☆MĭηɦღAηɦ❄
2 tháng 4 2020 lúc 17:06

em ko biết làm :">

\(\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\\sqrt{x-2}+\sqrt{y-3}=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\2\sqrt{x-2}+2\sqrt{y-3}=10\end{cases}}\)

\(\Leftrightarrow2\sqrt{x-2}+3\sqrt{y-3}-2\sqrt{x-2}-2\sqrt{y-3}=14-10\)

\(\Leftrightarrow\sqrt{y-3}=4\Leftrightarrow y-3=16\Leftrightarrow y=19\)

\(\Rightarrow\sqrt{x-2}+\sqrt{19-3}=5\)

\(\Leftrightarrow x-2=\left(5-4\right)^2\Leftrightarrow x-2=1\Leftrightarrow x=3\)

\(\hept{\begin{cases}3\left(x+1\right)-y=6-2y\\2x-y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3-y=6-2y\\2x-y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6x+2y=6\\6x-3y=21\end{cases}}\)

\(\Leftrightarrow6x+2y-6x+3y=6-21\)

\(\Leftrightarrow5y=-15\Leftrightarrow y=-3\)

\(\Rightarrow x=\frac{7-3}{2}=2\)

Khách vãng lai đã xóa
☆MĭηɦღAηɦ❄
2 tháng 4 2020 lúc 17:12

\(\hept{\begin{cases}\sqrt{2}x+\left(\sqrt{2}+1\right)y=3\\x+\sqrt{2}y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+\sqrt{2}y+y=3\\\sqrt{2}x+y=2\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\sqrt{2}x+\sqrt{2y}+y-\sqrt{2}x-y=3-2\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}y=3-2\sqrt{2}\)

\(\Rightarrow y=\frac{3-2\sqrt{2}}{\sqrt{2}}=\frac{3}{\sqrt{2}}-2\)( em ko biết rút gọn sao :vv)

\(\Rightarrow x+\sqrt{2}\left(\frac{3}{\sqrt{2}}-2\right)=2\)

\(\Leftrightarrow x+3-2\sqrt{2}=2\)

\(\Leftrightarrow x=2\sqrt{2}-1\)

Khách vãng lai đã xóa
Nguyễn Thị My
Xem chi tiết
Trí Tiên亗
4 tháng 3 2020 lúc 15:27

a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )

Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)

\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )

Thay \(x=1\) vào hệ (1) ta có :

\(\sqrt{2}-\sqrt{3y}=1\)

\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)

\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )

P/s : E chưa học cái này nên không chắc lắm ...

Khách vãng lai đã xóa
Bui Huyen
4 tháng 3 2020 lúc 20:22

\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)

Khách vãng lai đã xóa
Bui Huyen
4 tháng 3 2020 lúc 20:28

\(d,\hept{\begin{cases}\sqrt{6x}-\sqrt{4y}=\sqrt{2}\\\sqrt{6x}+\sqrt{9y}=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5\sqrt{y}=3-\sqrt{2}\\\sqrt{2x}+\sqrt{3y}=\sqrt{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{11-6\sqrt{2}}{25}\\x=\frac{9+6\sqrt{2}}{25}\end{cases}}\)

Khách vãng lai đã xóa
ARMY MINH NGỌC
Xem chi tiết
LIVERPOOL
4 tháng 7 2017 lúc 8:40

a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0

=>x=y=z thay vào pt 2 ta dc x=y=z=3

c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0

Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)

=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...

d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)

\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)

 <=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)

<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)

=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x

b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y

Nguyễn Thị Bích Ngọc
Xem chi tiết
Game Master VN
9 tháng 7 2017 lúc 20:19

ai k mình k lại nhưng phải lên điểm mình tích gấp đôi