Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phamphuckhoinguyen
Xem chi tiết
Nguyễn Linh Chi
21 tháng 2 2020 lúc 20:51

Câu hỏi của Nguyễn Trung Dũng - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

Khách vãng lai đã xóa
Nguyen Thi  Minh Thu
Xem chi tiết
Nguyen Thi  Minh Thu
25 tháng 4 2016 lúc 21:26

A=1+1/3+1/3^2+...+1/3^2014

3A=3.(1+1/3+1/3^2+...+1/3^2014)

3A=3+1+1/3+....+1/3^2013

Lấy 3A-A ra 2A=3-1/3^2014(nhớ quy tắc phá ngoặc và chuyển dấu nhé)

A=(3-1/3^2014):2=3/2-1/3^2014.2

suy ra A<3/2

Vậy A<3/2

Bài làm của mình có thể có nhiều sai sót mong các bạn sẽ giúp đỡ mình để lần sau bài làm của mình sẽ hoàn thiện hơn

nguyen thi ngoc
Xem chi tiết
Nguyễn Anh Kim Hân
28 tháng 4 2016 lúc 16:10

\(A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2014}}\)

\(A=\left(3A-A\right):2\)

\(3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)

\(A=\left(3-\frac{1}{3^{2014}}\right):2\)

\(A=\frac{3}{2}-\frac{1}{2.3^{2014}}\)

\(\Rightarrow A<\frac{3}{2}\)

Nguyễn Trung Dũng
Xem chi tiết
Arima Kousei
30 tháng 4 2018 lúc 9:03

\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)

\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)

\(\Rightarrow3A-A\)=  \(\left(3+1+...+\frac{1}{3^{2013}}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^{2014}}\right)\)

\(\Rightarrow2A=3-\frac{1}{3^{2014}}\)

\(\Rightarrow A=\frac{3-\frac{1}{3^{2014}}}{2}\)

\(\Rightarrow A=\frac{3}{2}-\frac{\frac{1}{3^{2014}}}{2}< \frac{3}{2}\)

Vậy  \(A< \frac{3}{2}\)

Chúc bạn học tốt !!! 

Nana
Xem chi tiết
Hoang Quoc An
Xem chi tiết
Đỗ Thị Hơ Ny
22 tháng 4 2016 lúc 19:51

Ta có:

    A=1+1/3+1/32+1/33+...+1/32014

=>3A=3+1/32+1/33+1/34+...+1/32015

=>2A=2+1/32015-1/3

=>A=1+2/32015-2/3

OK!

Phạm Đăng Khoa
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 8 2021 lúc 10:26

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

Lấp La Lấp Lánh
20 tháng 8 2021 lúc 10:34

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

Nguyễn Đăng Tuyển
Xem chi tiết
Arima Kousei
8 tháng 7 2018 lúc 21:37

Ta có : 

\(A=\frac{1}{2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)

\(\Rightarrow A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)\)

\(\Rightarrow A=\frac{1}{4}-\frac{1}{760}< \frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)

Phạm Tuấn Đạt
8 tháng 7 2018 lúc 21:19

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{1}{2}\left(\frac{189}{380}\right)=\frac{189}{760}< \frac{1}{4}\)

Dương Lam Hàng
8 tháng 7 2018 lúc 21:23

Ta có: \(A=\frac{1}{2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+....+\frac{1}{18\times19\times20}\)

              \(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+...+\frac{1}{18\times19}-\frac{1}{19\times20}\right)\)

               \(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{19\times20}\right)\)

                 \(=\frac{1}{2}\times\frac{1}{1\times2}-\frac{1}{2}\times\frac{1}{19\times20}\)

                   \(=\frac{1}{4}-\frac{1}{2}\times\frac{1}{19\times20}< \frac{1}{4}\)

Vậy A < 1/4

Nguyễn Ngọc Anh
Xem chi tiết
Không Tên
27 tháng 3 2018 lúc 13:04

\(A=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right):2\)

\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right):2\)

\(=\left(1-\frac{1}{2017}\right):2\)\(< \)\(\frac{1}{2}\)   (Do 1 - 1/2017 < 1)