Chứng minh rằng \(n^4+4\) là hợp số (\(n\in N,n>1\) )
Chứng minh rằng \(n^4+4\) là hợp số \(\left(n\in N,\right)n>1\)
\(^{n^4}\)+4
=(n^2)^2+4n^2+4-4n^2
=(n^2+2)^2-(2n)^2
=(n^2-2n+2)(n^2+2n+2)
vi n>1 n la so tu nhien nen n^2+- 2n +2 khac 1 va n^4+1
do do n^4 +1 la hop so
Cho n\(\in\)N*,n>1.Chứng minh rằng 4n+n4 là hợp số
Chứng minh rằng: với mọi số nguyên n >1 , số A = n4+4n là một hợp số.
Bạn tham khảo câu trả lời của anh alibaba Nguyễn ở đây nhé:
https://olm.vn/hoi-dap/detail/77939936222.html
Câu hỏi của Nguyễn Thị Thảo - Toán lớp 7 - Học toán với OnlineMath
Cho n là số tự nhiên lớn hơn 1. Chứng minh rằng n4 + 4n là hợp số
n là số tự nhiên lớn hơn 1 nên n có dạng \(n=2k\) hoặc \(n=2k+1\) với k là
số tự nhiên lớn hơn 0.
- Với \(n=2k\), ta có \(n^4+4^n=\left(2k\right)^4+4^{2k}\) lớn hơn 2 và chia hết cho 2. Do đó \(n^4+4^n\)là hợp số
- Với n = 2k+1 ta có :
\(n^4+4^n=n^4+4^{2k}.4=n^4+\left(2.4^k\right)^2=\left(n^2+2.4^k\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2.4^k-2.n.2^k\right)\left(n^2+2.4^k+2.n.2^k\right)\)
\(=\left[\left(n-2^k\right)^2+4^k\right]\left[\left(n+2^k\right)^2+4^k\right]\)
Mỗi thừa số đều lớn hơn hoặc bằng 2. Vậy n4 + 4n là hợp sô
Chúc bạn học tốt !!!
Chứng minh rằng với n thuộc N* thì A= n^4 + 4^n là hợp số
1. Chứng minh rằng với mọi số tự nhiên n thì ƯCLN(21 4;14 3) 1 n n
2. Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 và 2 1 p cũng là số nguyên tố thì 4 1 p
là hợp số?
Cho n là số tự nhiên lớn hơn 1. Chứng minh rằng 4n+n4 là hợp số.
m^2-n^2=(m+n)(m-n)
...Nhưng vì m^2-n^2 là số nguyên tố nên trong 2 thừa số, thừa số nhỏ hơn phải bằng 1, tức m-n=1.Vậy m và n là 2 số tự nhiên liên tiếp
cho tich
Cho n = 2,3,4,5,6.
a)Chứng minh rầng 6 số tự nhiên liên tiếp n+2, n+3, n+4, n+5, n+6, n+7 là hợp số.
b) Chứng minh rằng tồn tại 2018 số tự nhiên là hợp số.
c) Chứng minh rằng tồn tại m số tự nhiên là hợp số.
cho số tự nhiên lớn hơn 1. chứng minh rằng \(n^4+4^n\)là hợp số