cho a.b thuộc z t/m: a^2+b^2+1=2(ab+a+b). cmr a và b là hai số chính phương liên tiếp
cho a.b thuộc z t/m: a^2+b^2+1=2(ab+a+b). cmr a và b là hai số chính phương liên tiếp
cho a.b thuộc z t/m: a^2+b^2+1=2(ab+a+b). cmr a và b là hai số chính phương liên tiếp
mong các bạn giải cho mik. mik sẵn sàng tick đúng cho các bạn
Cho a,b thuộc N
Thỏa mãn: a2+b2+1=2.(ab+a+b)
Chứng minh: a và b là hai số chính phương liên tiếp
a) Tìm n thuộc Z để 2n2+3n+2 chia hết cho n+1
b) Tìm m,n thuộc Z biết mn-n-m=1
c) Cho m,n là 2 số chính phương lẻ liên tiếp
CMR: mn-m-n+1 chia hết cho 192
Cho a,b là hai số tự nhiên liên tiếp và c=ab.
CMR: P=a2+b2+c2 là một số chính phương lẻ
a, b là 2 số tự nhiên liên tiếp nên a hoặc b sẽ là một số chẵn hoặc một số lẻ. => a=2k, b=2k+1, c=2k(2k+1)
P=a^2+b^2+c^2
P=(2k)^2+(2k+1)^2+[(2k)(2k+1)]^2
P=4k^2+4k^2+1+2.2k+4k^2(2k+1)^2
P=4k^2+4k^2+4k+4k^2.(4k^2+1+4k)+1
mà 4k^2+4k^2+4k+4k^2.(4k^2+1+4k) chia hết cho 2
=> P ko chia hết cho 2.
P là số chính fuong lẻ
Cho a,b thuộc N
Thỏa mãn: a2+b2+1=2.(ab+a+b)
Chứng minh: a và b là hai số chính phương liên tiếp
Giúp mình với nha
Ta có: \(a^2+b^2+1=2\left(ab+a+b\right)\)
\(\Leftrightarrow\)\(a^2+b^2+1-2ab-2a-2b=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)-2a+2b+1-4b=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2-2\left(a-b\right)+1=4b\)
\(\Leftrightarrow\)\(\left(a-b-1\right)^2=4b\) \(\left(1\right)\)
Do đó \(4b\)là một số chính phương, mà 4 là số chính phương suy ra b là số chính phương.
Đặt \(b=x^2,\)thay vào \(\left(1\right)\): \(\left(a-x^2-1\right)^2=4x^2\)
\(\Leftrightarrow\)\(\left(a-x^2-1\right)^2=\left(2x\right)^2\)
* Xét 2 trường hợp:
- Trường hợp 1: \(a-x^2-1=2x\)\(\Leftrightarrow\)\(a=x^2+2x+1=\left(x+1\right)^2\)
Ta có \(b=x^2\)và \(a=\left(x+1\right)^2\)\(\Rightarrow\)\(a\)và \(b\)là 2 số chính phương liên tiếp.
- Trường hợp 2: \(a-x^2-1=-2x\)\(\Leftrightarrow\)\(a=x^2-2x+1=\left(x-1\right)^2\)
Ta có \(b=x^2\)và \(a=\left(x-1\right)^2\)\(\Rightarrow\)\(a\)và \(b\)là 2 số chính phương liên tiếp.
Vậy \(a\)và \(b\)là 2 số chính phương liên tiếp.
BÀI 1: Cho a và b thuộc N( a.b khác 0)
X=(ab-1)^2 + (a+b)^2. CMR: X là hợp số
BÀI 2: Cho a và b thuộc Z:
X= a^5b - ab^5.CMR: X chia hết cho 30
BÀi 1: (ab-1)^2+(a+b)^2
=a^2b^2 -2ab+1+a^2+2ab+b^2
=a^2b^2 +a^2 +b^2+1
= a^2(b^2+1) +(b^2+1)
=(a^2 +1)(b^2 +1) MÀ a,b thuộc N* , a^2+1>= 0 với mọi a, b^2+1>= 0 với mọi b
Vậy x là hợp số
Cho a,b là 2 số tự nhiên liên tiếp và c=ab.
cmr: P=a^2+b^2+c^2 là một số chính phương lẻ
Vì a,b là 2 số tự nhiên liên tiếp nên b=a+1
Thay b=a+1 và c=ab vào P=
a^2 + (a+1)^2+a^2.b^2 = a^2+a^2+2a+1+a^2.(a+1)^2=
a^4+2a^3+3a^2+2a+1 = (a+1)(a^3+a^2+2a)+1= (a+1)((a^2)(a+1)+2a)+1=a^2(a+1)^2+2a.(a+1)+1=((a+1).a+1)^2 Hằng đẳng thức
vi a.(a+1) chẵn nên a.(a+1)+1 lẻ suy ra P là số chính phương lẻ
Cho a và b là 2 số chính phương lẻ liên tiếp .CMR: (a-1)*(b-1) chia hết cho 192
Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link này nhé!