Chứng minh rằng không tồn tại số nguyên a thỏa mãn \(\left(2017^{2017}+1\right)⋮a^3+11a\)
nhờ các bạn giải giúp mình này mk sẽ k cho
CMR:ko tồn tại số nguyên a thỏa mãn ( 2017 mũ 2017+1) chia hết a3+11a
Chứng minh không tồn tại số nguyên n thỏa mãn :
\(\left(2020^{2020}+1\right)⋮\left(n^3+2018n\right)\)
Giả sử tồn tại số nghuyên n thỏa mãn \(\left(2020^{2020}+1\right)⋮\left(n^3+2018n\right)\)
Ta có \(n^3+2018n=n^3-n+2019n=n\left(n-1\right)\left(n+1\right)+2019⋮3\)
Mặt khác \(2020^{2020}+1=\left(2019+1\right)^{2020}+1\) chia 3 dư 2
\(\Rightarrow\) vô lí
Vậy không tồn tại số nguyên n thỏa mãn yêu cầu bài toán
Chứng minh không tồn tại 2 số nguyên a,b sao cho: \(\left(a+b\sqrt{2}\right)^2=2016+2017\sqrt{2}\)
gấu koala có avata chim cánh cụt
vô tay
Cho \(A=1-\frac{2017}{2019}+\left(\frac{2017}{2019}\right)^2-\left(\frac{2017}{2019}\right)^3+...+\left(\frac{2017}{2019}\right)^{2018}\)
Chứng minh A không là số nguyên.
Cho các số nguyên dương a; b; c; d thỏa mãn a+b+c=2017
Chứng minh rằng gái trị biểu thức sau không phải là một số nguyên
\(A=\frac{a}{2017-c}+\frac{b}{2017-a}+\frac{c}{2017-b}\)
Thay \(a+b+c\) vào \(A\) ta được:
\(A=\frac{a}{2017-c}+\frac{b}{2017-a}+\frac{c}{2017-b}\)
\(=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)
Ta có:
\(\frac{a}{a+b}< \frac{a+b}{a+b+c}\)
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng vế với vế ta được:
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow A< 2\left(1\right)\)
Lại có:
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng vế với vế ta lại được:
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)\(=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow A>1\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow1< A< 2\)
Vậy \(A\) không phải là số nguyên (Đpcm)
cái này chứng minh 1 < A < 2. mình chỉ bít chứng minh 1 < A thui
Ta có \(\frac{a}{2017-c}>\frac{a}{2017};\frac{b}{2017-a}>\frac{b}{2017};\frac{c}{2017-b}>\frac{c}{2017}\)
suy ra \(A>\frac{a}{2017}+\frac{b}{2017}+\frac{c}{2017}=\frac{2017}{2017}=1\)
=> A > 1
Chứng minh không tồn tại số nguyên a sao cho a.(a^2+3.a+2)=(6^2017)+1
1. Tồn tại hay không 5 số nguyên \(a;b;c;d;e\) thỏa mãn đẳng thức
\(a^2+b^2=\left(a+1\right)^2+c^2=\left(a+2\right)^2+d^2=\left(a+3\right)^2+e^2\)
2. Cho các số nguyên dương \(a;b;c;d\) thỏa mãn \(\hept{\begin{cases}a^2+1=bc\\c^2+1=ad\end{cases}}\)
Chứng minh \(b+c=3a\)
3. Cho tập hợp \(A=\left\{1;2;3;...;2017\right\}.\) Có bao nhiêu tập hợp con của A sao cho tổng bình phương các phần tử của tập hợp con đó là số lẻ?
Cho 2022 số tự nhiên a(1), a(2), a(3), ..., a(2021), a(2022) khác 0 thỏa mãn:
\(\dfrac{1}{a\left(1\right)}\) + \(\dfrac{1}{a\left(2\right)}\) + ... + \(\dfrac{1}{a\left(2021\right)}\) + \(\dfrac{1}{a\left(2022\right)}\) = 1. Chứng minh rằng: tồn tại ít nhất một số trong 2022 số đã cho là số chẵn.