Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Duy Long
Xem chi tiết
zoombie hahaha
5 tháng 7 2017 lúc 8:39

1. Xét PT 2. Xét \(x^2y=0\)=>......

Xét \(x^2y\ne0\)Chia 2 vế pt 1 cho x^2y^2, chia 2 vế pt 2 cho x^2y rồi đặt 1/x=a, 1/y=b

=>\(\hept{\begin{cases}a^2+b^2=2\\a^2+8+3ab=5b^2+7a\end{cases}}\)=>\(a^2+a^2+b^2+6+3ab=5b^2=7a.\)Phân tích thành nhân tử

Rau
5 tháng 7 2017 lúc 21:14

Đề nghị bạn xem lại đề câu 2.

Nguyễn Thị Hòa
Xem chi tiết
Nguyễn Khánh Hiển Long
9 tháng 7 2021 lúc 17:09

Dùng cái đầu đi ạ

Khách vãng lai đã xóa
Thiên An
Xem chi tiết
alibaba nguyễn
12 tháng 2 2017 lúc 8:55

a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)

Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)

Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:

\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)

\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)

\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)

\(\Rightarrow1-\sqrt{x}\ge0\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1

alibaba nguyễn
12 tháng 2 2017 lúc 9:01

b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)

Xét pt (1) ta có

\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành

\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)

\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)

Tới đây đơn giản rồi làm tiếp nhé

alibaba nguyễn
12 tháng 2 2017 lúc 9:15

c/ \(\hept{\begin{cases}2x+2y-\sqrt{xy}=3\\\sqrt{3x+1}+\sqrt{3y+1}=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+2y-\sqrt{xy}=3\\3x+3y+2+2\sqrt{9xy+3x+3y+1}=16\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\)thì ta có

\(\hept{\begin{cases}2a-\sqrt{b}=3\\3a+2\sqrt{9b+3a+1}=14\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=4a^2-12a+9\\3a+2\sqrt{36a^2-105a+82}=14\end{cases}}\)

Tiếp tục chuyển vế pt dưới rồi bình phương 2 vế tìm được a có a suy ra b từ đây tìm được x, y

nguyenvantai
Xem chi tiết
takao
11 tháng 3 2017 lúc 13:14

chang hieu gi ca

hello toan
11 tháng 3 2017 lúc 13:24

mk ko hiu

Ánh Nguyệt Đỗ
Xem chi tiết
Đào Linh Chi
Xem chi tiết
Blue Moon
28 tháng 11 2018 lúc 21:14

a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)

từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được: 

\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)

nhân ra giải phương trình rồi tìm x, tự lm nhé.

b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)

Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé

Nguyễn Anh Dũng An
Xem chi tiết
Nguyễn Linh Chi
18 tháng 6 2020 lúc 2:26

ĐK: \(x\ge\frac{1}{2}\)

\(\hept{\begin{cases}x\left(2x-2y-1\right)=3\left(y+2\right)\left(1\right)\\3y+6\sqrt{2x-1}=y^2-x+23\left(2\right)\end{cases}}\)

pt (1) <=> \(2x^2-2xy-x-3y-6=0\)

<=> \(2x^2-x\left(2y+1\right)-\left(3y+6\right)=0\)

có \(\Delta=\left(2y+1\right)^2+4\left(3y+6\right)=4y^2+28y+49=\left(2y+7\right)^2\)

=> (1) có hai nghiệm: \(\orbr{\begin{cases}x_1=\frac{\left(2y+1\right)-\left(2y+7\right)}{4}=-\frac{3}{2}\left(loai\right)\\x_2=\frac{\left(2y+1\right)+\left(2y+7\right)}{4}=y+2\end{cases}}\)

+) Với \(x=y+2\) thế vào (2) ta có: 

\(3y+6\sqrt{2\left(y+2\right)-1}=y^2-\left(y+2\right)+23\)

<=> \(6\sqrt{2y+3}=y^2-4y+21\)

ĐK: \(y\ge-\frac{3}{2}\)

\(6\sqrt{2y+3}=y^2-4y+21\)

<=> \(6\sqrt{2y+3}-2y-12=y^2-6y+9\)

<=> \(\frac{2\left(9\left(2y+3\right)-\left(y+6\right)^2\right)}{3\sqrt{2y+3}+y+6}-\left(y-3\right)^2=0\)

<=> \(\frac{-2\left(y-3\right)^2}{3\sqrt{2y+3}+y+6}-\left(y-3\right)^2=0\)

<=> \(\left(y-3\right)^2\left(\frac{-2}{3\sqrt{2y+3}+y+6}-1\right)=0\)

<=> y - 3 = 0 

<=> y = 3 thỏa mãn 

khi đó x = y + 2 = 3 + 2 = 5 thỏa mãn

Kết luận:...

Khách vãng lai đã xóa
Huy Công Tử
Xem chi tiết
lê duy mạnh
Xem chi tiết
lê duy mạnh
5 tháng 8 2019 lúc 8:19

MN ƠI GIÚP E MAI E ĐI HOK RỒ

lê duy mạnh
5 tháng 8 2019 lúc 8:28

GIÚP E MN OEWI