Cho \(P=10^{50}+5\cdot10^{20}+1\). Chứng minh rằng P không phải là số chính phương .
Cho A=10^2012 +10^2011 +10^2010 +10^2009 +8
a) Chứng minh rằng A chia hết cho 24
b) Chứng minh rằng A không phải là 1 số chính phương
a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)
A có tổng các chữ số là 12 chia hết cho 3 (2)
Từ (1) và (2) với (3,8)=1 => A chia hết cho 24
b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
Cho biêu thức M=(10n+10n-1+...+10+1)(10n+1+5)+1
Chứng minh rằng M là một số chính phương nhưng không phải la lập phương của một số tự nhiên
Cho A=(23.169.910+219.3610):(5020:540) . Chứng minh rằng A là một số chính phương
1. Viết các số tự nhiên từ 50 đến 100 liên tiếp nhau và thu được số 505152...9899100. Hỏi số này có là số chính phương không?
2. Cho n \(\in\)N (n-1 không chia hết cho 4). Chứng minh rằng \(7^{n+2}\)không là số chính phương
3. Cho A= 19\(n^6\)+ 5\(n^5\)+1890\(n^3\)-19\(n^2\)-5n+1993. CHứng minh rằng A không phải là số chính phương
chua chac tan cung la cac so do da la so chinh phuong
Chứng minh rằng tổng các bình phương của 5 số tự nhiên liên tiếp không phải là 1 số chính phương
Gọi 5 số tự nhiên liên tiếp đó là n - 2 ; n - 1 ; n ; n + 1 ; n + 2 ( n thuộc N , n > 2 )
Ta có : \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5.\left(n^2+n\right)\)
Vì \(n^2\)không thể tận cùng là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5
\(\Rightarrow\)\(5.\left(n^2+2\right)\)không là số chính phương hay tổng các bình phương của 5 số tự nhiên liên tiếp không phải là 1 số chính phương ( đpcm )
cho A là 1 số chia hết cho 5.chứng minh rằng a+2 không phải là số chính phương
ấy bạn từ từ giải nha mình không nôn nóng ~
Vì a là số chia hết cho 5 => a có c/s tận cùng là 0 hoặc 5
+ Với a có c/s tận cùng là 0
=> a+2 có c/s tận cùng là 2
=> a+2 ko là số chính phương (Vì số chính phương có c/s tận cùng là 0;1;4;9 hoặc 6)
+ Với a có c/s tận cùng là 5
=>a+2 có c/s tận cùng là 7
=> a+2 ko là số chính phương (Vì số chính phương có c/s tận cùng là 0;1;4;9 hoặc 6)
Vậy cho a là 1 số chia hết cho 5 thì rằng a+2 không phải là số chính phương. Bài toán dc chứng minh
Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2
Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5
=>5(n2+2) không chia hết cho 25=> A không phải SCP
k mik nha!mấy bạn
:D
cho A=102014+102013+102012+102011 +8
a)chứng minh rằng A chia hết cho 24
b)chứng minh rằng A không phải là số chính phương
a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)
A có tổng các chữ số là 9 nên chia hết cho 3 (2)
Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24
b) A có chữ số tận cùng là 8 nên không là số chính phương
a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)
A có tổng các chữ số là 9 nên chia hết cho 3 (2)
Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24
b) A có chữ số tận cùng là 8 nên không là số chính phương
làm thế nào mà tìm được các chữ số là 9
1) tìm các số tự nhiên có 3 chữ số biết rằng khi nhân số đó với 3672 ta được kết quả là số chính phương
2) chứng tỏ rằng với mọi số tự nhiên n thì tích (n + 4). (n +5) chia hết cho 2
3) Chứng minh rằng số 111…12111...1 không phải là số nguyên tố 50 chữ số 1 50 chữ số 1
Cho A bằng 102012+102011+102010+102009+8
a) Chứng minh rằng A chia hết cho 24
b) Chứng minh rằng A không phải là số chính phương.
a/ Xét chữ số tận cùng của A là 008 nên chia hết cho 8 (1)
A có tổng các chữ số là 12 nên chia hết cho 3 (2)
Lại có (8,3) = 1 (3)
Từ (1)(2)(3) suy ra A chia hết cho 24